
Business Analytics in R
Introduction to Statistical Programming

TIMOTHY WONG1

JAMES GAMMERMAN2

July 15, 2019

1timothy.wong@hotmail.co.uk
2jgammerman@gmail.com

timothy.wong@hotmail.co.uk
jgammerman@gmail.com

ii

Contents

1 R Ecosystem 3

1.1 Programming Enviornment . 3

1.2 Packages . 5

2 Programming Concepts 7

2.1 Vector . 8

2.2 Character and Datetime . 9

2.3 Factor . 9

2.4 Logical Operator . 10

2.5 Special Numbers . 10

2.6 List . 11

2.7 Data Frame and Tibble . 11

2.8 Function . 13

2.9 Flow Control . 14

2.9.1 If-Else . 14

2.9.2 While . 15

2.9.3 For . 16

2.10 Apply . 16

iii

iv CONTENTS

3 Data Transformation 19

3.1 Filtering . 22

3.2 Sorting . 24

3.3 Subsetting Variables . 24

3.4 Compute Variables . 26

3.5 Summarising . 27

4 Regression Models 31

4.1 Linear Regression . 31

4.2 Poisson Regression . 42

4.3 Logistic Regression . 45

5 Tree-based Methods 47

5.1 Decision Trees . 48

5.2 Random Forest . 50

6 Neural Networks 53

6.1 Multilayer Perceptron . 55

7 Time Series Analysis 61

7.1 Auto-Correlation Function . 61

7.2 Decomposition . 66

7.3 ARIMA Model . 69

8 Survival Analysis 75

8.1 Kaplan-Meier Estimator . 75

8.2 Cox Proportional Hazards Model 77

CONTENTS v

9 Unsupervised Learning 81

9.1 K-means Clustering . 82

9.2 Hierarchical Clustering . 85

10 Extending R 93

10.1 R Markdown . 93

10.1.1 R Notebook . 97

10.2 Shiny Web Application . 97

10.3 Writing Packages . 102

10.4 Reproducibility . 105

11 Efficient Programming 107

11.1 Memory Usage . 107

11.2 Profiling . 109

11.3 Multithreaded Processing . 110

12 Distributed Computing 113

12.1 Apache Spark . 113

vi CONTENTS

List of Figures

1.1 RStudio Server Pro (RSP) . 4

3.1 Stages of data analysis . 20

3.2 Logical operators in R . 22

4.1 Partial regression plots . 37

4.2 Regression diagnostic plots . 39

4.3 A less flexible model showing better generalisability 41

4.4 A more flexible model illutrating the risk of overfitting 41

4.5 Poisson distribution with different λ values 42

4.6 Goodness-of-fit test for Poisson distribution 44

4.7 Graph showing the range of a logistic function 45

5.1 Recursive partitioning . 47

5.2 Decision tree for a regression problem 49

6.1 Common neural activation functions 54

6.2 MLP model with two hidden layers 57

6.3 MLP model with one-hot encoded categorical variables 60

7.1 ACF and PACF correlograms . 65

vii

viii LIST OF FIGURES

7.2 Lag plots showing the correlation of various lag periods 66

7.3 Decomposing an additive time series 67

7.4 Linear time series forecasting with trend and seasonal components 68

7.5 Forecast generated from a seasonal ARIMA model. 72

8.1 Kaplan-Meier curves showing two strata 77

8.2 Scaled Schoenfeld residuals of a selected set of variables plotted
against time . 80

9.1 Different ways to cluster a set of unlabelled objects 81

9.2 Biplot showing the first and second principal components 84

9.3 Comparing K-means clustering results using different K values . 85

9.4 Iterative steps of agglomerative hierarchical clustering 88

9.5 Dendrogram illustrating hierarchical clustering using complete linkage 89

9.6 Fan phylogram showing hierarchical clusters 91

10.1 Compiled R Markdown output in HTML format 96

10.2 Control widgets in shiny . 99

10.3 Default shiny template . 100

10.4 Interactive application displaying predicted flight departure delay. 100

10.5 Launching an empty package template. 102

10.6 Enabling roxygen2 to generate documentation 103

10.7 Enabling packrat dependency management system 106

11.1 Flame graph of profiling output 110

List of Tables

2.1 Functions in the apply family . 17

4.1 Summary of key model information 36

7.1 Description of the Amprion dataset 62

7.2 Description of the Bremen weather dataset 63

ix

x LIST OF TABLES

Preface

R is an open source language for statistical programming. It is widely used among
statisticians, academic researchers, and business analysts across the world. This
book is part of a training course designed for business analysts.

Web Access

The LATEX source code and the compiled PDF version of this book can be digitially
accessed at https://github.com/timothywong731/r-training

Acknowledgements

• A special word of thanks goes to the open source R community.

• Some of the examples in chapter 3 were adopted from Wickham and Grole-
mund’s book [2].

• Thanks to all contributors for reviewing this book:

– Artemis Maipa

– Phuong Pham

– Laura Shemilt

– Nyala Noe

1

https://github.com/timothywong731/r-training

2 LIST OF TABLES

Chapter 1

R Ecosystem

R is a language for statistical programming. The language is open source and free
for personal, academic and commerical use. It is available on multiple platforms
including Windows, Linux and MacOS. In recent years, R has gained popularity
and become one of the fastest growing programming languages in the world1. In
this chapter, we will go through the basics of R.

1.1 Programming Enviornment

RStudio2 is a popular Integrated Development Environment (IDE) for the R lan-
guage. It is a very powerful editor which enables programmers to interact with the R
language. RStudio is open-sourced and the desktop version is free for personal use.

Inside RStudio, the display is divided into different tabs which users can cus-
tomise. The following ones are particularly important:

Source Editor Inside RStudio, users can access the source editor for R code. This
can be treated as a powerful text editor for the various forms of R code, such
as standard R Script, R Markdown, R Notebook, R Sweave and shiny etc.
The source editor does not execute any code, it purely helps users edit it
efficiently.

Console The R interpreter is shown in the Console window. This is the place where
R code is processed. User can highlight a segment of R code in the main text
editor and press Ctrl + Enter to send it to execution. Once the code is

1https://stackoverflow.blog/2017/10/10/impressive-growth-r/
2https://www.rstudio.com

3

https://stackoverflow.blog/2017/10/10/impressive-growth-r/
https://www.rstudio.com

4 CHAPTER 1. R ECOSYSTEM

sent, it will be executed in the R interpreter and the results will be displayed.
Alternatively, users can just place the blinking cursor on a line and press the
same keys. This sends the entire line to the interpreter for execution. Users
can press Ctrl + L to clear existing screen output.

Environment Users can access all the variables created in the current R session.
The workspace which includes all variables can be exported as .RData
file in the environment window. Users can also import workspace from an
existing .RData file.

Files It allows users to browse files on the local storage system. Users can navigate
to their own home directory using the ~ path.

Plots All graphical outputs produced by the R interpreter are displayed in the plots
tab. Users can export the graph as file in this tab.

Packages Users can view the installed packages in this tab and load them manually.

Help Documentation can be searched and viewed in this tab. Users can open
documentation of a particular function using ? character in the interpreter.
For instance, ?sum will open up the documentation for the sum() function.

Figure 1.1: RStudio Server Pro (RSP)

Exercise 1 Using RStudio IDE

1.2. PACKAGES 5

• Use your interactive console to print your name using : print("hello <my name>")

• Write the source code to print your name and run it.

1.2 Packages

Functionality in R can be extended through packages. Most packages are open-
sourced with a few exceptions. They are published on community-maintained
repositories such as CRAN and Bioconductor.

The function install.packages() can be used to install new packages
from CRAN (or a CRAN-like source).

R Example 1.2.1

Return all installed packages
installed.packages()
Install a new package and all its dependencies from CRAN
This will install to the default library location
install.packages("ggplot2")
Load an installed package
(both lines are identical)
library(ggplot2)
library("ggplot2")

The number of packages on CRAN has grown exponentially in the past few
years. To help users select relevant packages for certain statistical topics, users can
refer to the CRAN Task View3. It provides a curated list of packages which usually
serves as good topical guide.

3https://cran.r-project.org/web/views/

https://cran.r-project.org/web/views/

6 CHAPTER 1. R ECOSYSTEM

Chapter 2

Programming Concepts

In R, everything begins with variables. Users can assign value to variable using the
<- symbol. The # character is used for commenting.

To name a variable, it is very common to name variables in R using the ’camel
case’ convention. Sometimes ’snake case’ and ’dot case’ are also used. There is a
detailed journal article [1] explaining the rationale behind each naming style.

When creating a new variable, it is important to avoid using reserved words.
Reserved words can be checked by running the command ?Reserved.

R Example 2.0.1

Assign variables
myVarX <- 5
myVarY <- 20
Perform multiplication
myVarX * myVarY
Look at the reserved words
?Reserved
Camal case
myCamalCaseVar <- "this is camal case"
Other less commonly-used styles
my_snake_case_var <- "this is lower snake case"
MY_UPPER_SNAKE_CASE_VAR <- "this is upper snake case"
my.dot.case.var <- "this is dot case"
MyPascalCaseVar <- "this is pascal case"

7

8 CHAPTER 2. PROGRAMMING CONCEPTS

2.1 Vector

R is a vectorised programming language. A vector of consecutive integers can
be created using the : character. Alternatively, a vector of discrete values can be
created using the function c(). All elements of a vector must have the same data
type.

R Example 2.1.1

Create a vector of integers one to ten
myVec1 <- 1:10
Find out the length of vector
length(myVec1)
Reverse the vector
This does not change the value of myVec1
rev(myVec1)
Create a custom vector of 10, 15, 20, 25, 30
myVec2 <- c(10, 15, 20, 25, 30)
Create a vector of sequential numbers with increment 0.5
myVec3 <- seq(from = -2, to = 2, by = 0.5)
Elements of a vector can be named
myVec4 <- c(`New York` = 8.5,

`London` = 8.6,
`Moscow` = 11.9)

Users can select elements of a vector by subsetting using index number. In
R, index numbers start from 1, 2, 3, For example, myVec2[2] will return the
second element of the vector.

R Example 2.1.2

Select the second element of the vector
myVec2[2]
Subset a range from the vector
myVec2[2:4]
Subset specified elements
myVec2[c(4,2,3)]
Subset named element of a vector
myVec4["New York"]

Most operations in R are vectorised. Vectorisation means the operation is
applied to the whole vector instead of individual elements.

R Example 2.1.3

Arithmetic operations
myVec1 + 10
myVec1 - 10

2.2. CHARACTER AND DATETIME 9

myVec1 * 2
myVec1 / 2
myVec1 ^ 2
log(myVec1)

2.2 Character and Datetime

Users can create vectors of other data types easily in R. Example 2.1.3 shows how
to create a character vector, a date vector and a POSIXct(date/time) vector.

R Example 2.2.1

Vector can contain character objects
myVec4 <- c("Bill", "Mark", "Steve", "Jeff", "Larry")
Constant character vectors in R
LETTERS
letters
month.name
month.abb
This is a vector of Date objects
myVec5 <- as.Date(c("2017-07-13",

"2017-10-11",
"2017-11-21",
"2018-01-16",
"2018-03-27"))

Load the lubridate package
Use the function ymd_hms() to parse date/time with timezone
Returns a vector of POSIXct (date/time) object
library(lubridate)
myVec6 <- ymd_hms(c("2017-07-13 09:30:00",

"2017-10-11 08:00:00",
"2017-11-21 10:00:00",
"2018-01-16 11:30:00",
"2018-03-27 12:00:00"),

tz = "Europe/London")
Date/time manipulation applied to a vector
myVec7 <- myVec6 + hours(1) + minutes(30)
Compute the day of week - returns a vector of characters
weekdays(myVec7)

2.3 Factor

Categorical data can be represented in R using factor. This is an efficient to store
repetitive values.

Factors can either be ordered or unordered. Ordered factors can be compared
using logical operators.

10 CHAPTER 2. PROGRAMMING CONCEPTS

R Example 2.3.1

Create an ordered factor variable
myValues <- c("Low", "High", "High", "Medium", "Medium")
myOrder <- c("Low", "Medium", "High")
myFactor <- factor(myValues,

levels = myOrder,
ordered = TRUE)

Print the factor
myFactor
Check the number of levels in the factor variable
nlevels(myFactor)
Print the labels of the factors
levels(myFactor)
Compare the levels of individual observations
myFactor[1] > myFactor[2]
myFactor[2] > myFactor[1]
myFactor[2] == myFactor[3]

2.4 Logical Operator

Logical operators can be applied on vector objects. It always returns a vector of
logical values with the same length as the input vector. Examples 2.4.1

R Example 2.4.1

Find all values greater than 5 - returns a vector of logical values
myVec1 > 5
Find all values equal to 7
myVec1 == 7
Find all values matching 2,4,6 and 8
myVec1 %in% c(2,4,6,8)
Find all values between 2 and 7
myVec1 >= 2 & myVec1 <= 7
Find all values equal to 7 or equal to 8
myVec1 == 7 | myVec1 == 8

2.5 Special Numbers

There are special numbers in R, which are shown in Example 2.5.1. For instance,
the variable pi is a constant 3.14159.... In most cases, missing values are usually
indicated as NA (Not Available). All operations involving an NA input always
produce an NA output.

2.6. LIST 11

On the other hand, values returned by computational error are NaN (Not-a-
Number). Mathematical infinities are indicated by Inf and -Inf.

R Example 2.5.1

Pi is constant 3.14159...
pi
One divided by zero is infinity
1/0
Negative number divided by zero is negative infinity
-1/0
Infinity divided by infinity is Not-a-Number (NaN)
Inf/Inf
Not available (NA) plus one is still NA
NA + 1
Effects of different special numbers
c(5, 10, 15, NA, 25, 30, NaN, 35, 40, Inf, 50, -Inf, 60) / 5

2.6 List

Objects with different data types can be held together in a list. Example 2.6.1
illustrates a list containing objects of several data types. Elements of a list can be
optionally named for easier subsetting.

R Example 2.6.1

myFavBook <- list(`title` = "R for Data Science",
`authors` = c("Garrett Grolemund", "Hadley Wickham"),
`publishDate` = as.Date("2016-12-12"),
`price` = 18.17,
`currency` = "USD",
`edition` = 1,
`isbn` = 1491910399)

Select a named element of a list
Use the dollar sign, followed by name without bracket
myFavBook$title
Use double squared brackets with element's name as character
myFavBook[["authors"]]
Select the fourth element in the list
myFavBook[[4]]

2.7 Data Frame and Tibble

A data frame is a list of variables of the same number of rows with unique row
names. In many cases, datasets extracted from CSV file or SQL server are returned

12 CHAPTER 2. PROGRAMMING CONCEPTS

as a data frame object. Example 2.7.1 demonstrates how to construct a data frame.

R Example 2.7.1

myFavMovies1 <- data.frame(`title` = c("Dr. No",
"Goldfinger",
"Diamonds are Forever",
"Moonraker",
"The Living Daylights",
"GoldenEye",
"Casino Royale"),

`year` = c(1962, 1964, 1971, 1979,
1987, 1995, 2006),

`box` = c(59.5, 125, 120, 210.3,
191.2, 355, 599),

`bondActor` = c("Sean Connery",
"Sean Connery",
"Sean Connery",
"Roger Moore",
"Timothy Dalton",
"Pierce Brosnan",
"Daniel Craig"))

In modern R, tibble is the enhanced version of the traditional data frame.
More functions are available for tibble objects. Example 2.7.2 shows how to
construct a tibble and append an extra row at the end.

R Example 2.7.2

library(tibble)
myFavMovies2 <- tibble(`title` = c("Dr. No",

"Goldfinger",
"Diamonds are Forever",
"Moonraker",
"The Living Daylights",
"GoldenEye",
"Casino Royale"),

`year` = c(1962, 1964, 1971, 1979,
1987, 1995, 2006),

`box` = c(59.5, 125, 120, 210.3,
191.2, 355, 599),

`bondActor` = c("Sean Connery",
"Sean Connery",
"Sean Connery",
"Roger Moore",
"Timothy Dalton",
"Pierce Brosnan",
"Daniel Craig"))

Append an extra row at the end of the tibble
Rewrite the original tibble object
myFavMovies2 <- add_row(myFavMovies2,

title = "Spectre", year = 2015, box = 880.7,
bondActor = "Daniel Craig")

2.8. FUNCTION 13

Example 2.7.3 shows that a tibble can be subsetted in various ways. The
most common operation is selecting a column by name.

R Example 2.7.3

Get one column by name
myFavMovies2[["title"]]
myFavMovies2$title
Get a range of columns by position ID
myFavMovies2[, 1:2]
myFavMovies2[1:2]
Get rows 1 to 3
myFavMovies2[1:3,]
Get the "year" variable of row 1-3
myFavMovies2[1:3, "year"]
Get the "title" and "year" variables of row 4-7
myFavMovies2[4:7, c("title","year")]

Exercise 2 Working with Data Frames

• Create your own favourite movies data frame (Your data frame must contain
more than one type.)

• Return a variable (column) of your data frame.

• Can you add another variable (column) to your data frame?

• Can you return an observation (row)?

2.8 Function

User can create custom functions in R. In example 2.8.1, a new function is.odd()
is created. The result can be explicitly returned using return(). Alternatively,
the value of the function’s last line is implicitly returned.

R Example 2.8.1

Defines a custom function
is.odd <- function(x) {
The modulo operator %% returns the remainder
If a number divide by 2 gives remainder 1, then it is an odd number
remainder <- x %% 2
equalToOne <- remainder == 1
return(equalToOne)

14 CHAPTER 2. PROGRAMMING CONCEPTS

}
Execute the function with one input
is.odd(5)
Execute the function with an integer vector
is.odd(1:10)
Define another function
is.even <- function(x) {

!is.odd(x)
}
Return true for even numbers
is.even(1:10)

Exercise 3 Working with Functions

• Write a new function called square.it() that returns the square of a
number.

• Can you apply this to a numerical column in your dataframe?

2.9 Flow Control

2.9.1 If-Else

An if-else statement is controlled by the condition. The if part will be executed
if the contition is TRUE. Alternatively, the else part will be executed. Example
2.9.1 shows a simple if-else control statement.

R Example 2.9.1

Loads the lubridate package for additional date/time functions
library(lubridate)
Find out what day is today
myWeekday <- weekdays(today())
Check whether today is Saturday or Sunday
if (myWeekday %in% c("Saturday","Sunday")) {

myGreeting <- "Have a nice weekend"
} else {

myGreeting <- "Go back to work"
}
Prints the message
myGreeting

The statement can be further extended to consider multiple conditions. It checks
the conditions sequentially and returns once a condition is met. This is shown in
example 2.9.2.

2.9. FLOW CONTROL 15

R Example 2.9.2

library(lubridate)
myWeekday <- weekdays(today())
Checks multiple conditions
if (myWeekday %in% c("Saturday","Sunday")) {
myGreeting <- "Have a nice weekend"

} else if(myWeekday == "Friday"){
myGreeting <- "It's Friday!"

} else if(myWeekday == "Monday"){
myGreeting <- "Oh no..."

} else {
myGreeting <- "Go back to work"

}
myGreeting

2.9.2 While

The while statement loops as long as the condition stays TRUE. Example 2.9.3
demonstrates how a while loop can be implemented.

R Example 2.9.3

myCounter <- 100
while (myCounter > 0) {

myCounter <- myCounter - 5
print(myCounter)

}

Example 2.9.4 shows that an early exit can be implemented in a while state-
ment using the break operator. The next operator can be used to skip one of the
iterations.

R Example 2.9.4

myCounter <- 100
while (myCounter > 0) {

myCounter <- myCounter - 5
if (myCounter > 50) {

Skips all iterations if the counter value is greater than 50
next

}
if (myCounter == 10) {

Early stop if the counter value matches 10
break

}
print(myCounter)

}

16 CHAPTER 2. PROGRAMMING CONCEPTS

2.9.3 For

For loops can be used to execute certain operations again and again. In example
2.9.5, the for loop calculates the sum expression

∑100
i=1 i

2 by running the code
sequentially many times.

R Example 2.9.5

myResult <- 0
for (i in 1:100) {

myResult <- myResult + i ^ 2
}
myResult

Exercise 4 Operational and Conditional Statements

• Write a for loop that runs through a list of numbers 1:20 and prints only the
even numbers.

• Can you change this loop so it prints just the odd numbers?

2.10 Apply

Functions in the apply family can be used to run operations over multiple values. In
example 2.10.1, the apply() function receives a tibble object and iterates over
each row. Variables of each row are merged in a character message and returned.

R Example 2.10.1

The second argument 1 inidicates iterate over rows
myMessages1 <- apply(myFavMovies2, 1, function(row){

sprintf("%s was released in %s.", row["title"], row["year"])
})
myMessages1

There are several useful functions in the apply family. In example 2.10.2, the
lapply() function receives an input and returns a list as output.

R Example 2.10.2

2.10. APPLY 17

myMessages2 <- lapply(myFavMovies2$title,
function(x){ sprintf("%s is a great movie!", x) })

Checks the data type of the result
typeof(myMessages2)
Check whether it is a list
is.list(myMessages2)
Select the 6th element of the list
myMessages2[[6]]

The sapply() function works in a similar way. It returns a vector as the result.
Example 2.10.3 shows how it can be used.

R Example 2.10.3

myMessages3 <- sapply(myFavMovies2$title,
function(x){ sprintf("%s is a great movie!", x) })

Check whether it is a list
is.list(myMessages3)
myMessages3

There are other useful members in the apply family, such as vapply(),
tapply(), mapply(), rapply() and eapply(). Table 2.1 shows a brief
summary of the functions.

Table 2.1: Functions in the apply family

Function Brief Description

apply() Apply function over a rows or columns of data frame.
lapply() Apply function over a vector and returns a list.
sapply() Apply function over a vector and returns a vector.
vapply() Apply function over a vector and returns a fixed result.
tapply() Apply function over a vector by groups.
mapply() Multivariate version of sapply().
rapply() Recursive version of lapply().
eapply() Apply function over named values in an environment.

Vectorisation can speed up code very significantly, therefore it is always a good
idea to vectorise code for maximum performance.

In R, looping can be slow because they are not vectorised. Moreover, R objects
are stored in memory. If the operation in the loop is altering the size of an object,

18 CHAPTER 2. PROGRAMMING CONCEPTS

it will force R to reallocate the object to a new memory address. For this reason,
avoiding to modify object size in loops can always speed up the code.

In example 2.10.4, the system.time() function is used to capture the total
time used to execute the code. The curly brackets {} wrap multi-line code in a
single expression.

R Example 2.10.4

Vectorised operation is fast
system.time({

myResult <- 1:100000 * 2
})
Looping is quite slow
system.time({

myResult <- sapply(1:100000, function(x){ x * 2 })
})
Appending to vector is much slower
system.time({

myResult <- c()
for(i in 1:100000){
myResult <- c(myResult, i * 2)

}
})

Exercise 5 Working with the apply family

• Write the for loop from the previous task, (runs through a list of numbers
1:20 and prints only the even numbers) as an apply function.

• (Advanced) Use the sys.time() function to find out if apply is faster
than for.

Chapter 3

Data Transformation

The tidyverse is a coherent system of packages for data manipulation, explo-
ration and visualisation that share a common design philosophy. These were mostly
developed by the prolific R developer Hadley Wickham1, but they are now be-
ing expanded by several contributors. The tidyverse packages are intended to
make data scientists and statisticians more productive by guiding them through the
workflow of a typical project. This is illustrated in figure 3.

You may begin the analysis by importing data into R. This typically means that
you take data stored in a file, database, or web API and load it into R as an object
known as a data frame or a tibble.

Once the data is imported, it is a good idea to tidy it. In brief, when your data is
tidy, each column is a variable and each row is an observation. This is important
because a consistent structure lets you focus your struggle on questions about the
data, not fighting to get the data into the right form for different functions.

Once you have tidy data, the usual next step is to transform it. This includes
narrowing in on observations of interest, creating new variables that are functions
of existing variables and calculating summary statistics.

There are two main engines of knowledge generation: 1) visualisation and
2) modelling . These have complementary strengths and weaknesses so a good
analysis will iterate between them many times.

Data visualisation is fundamentally a human activity. A good visualisation will
show you things that you did not expect, or raise new questions about the data. It
might also cast doubt on the research hypothesis or hint that you need to collect
different data. Visualisation does not scale particularly well because it requires

1http://hadley.nz

19

http://hadley.nz

20 CHAPTER 3. DATA TRANSFORMATION

human interpretation.

Models are complementary tools to visualisation. Once the research hypothe-
ses are sufficiently precise, you can use a model to address them. Models are
fundamentally mathematical or computational tools, so they generally scale well.

The last step of data science is communication, which is a critical part of any
data analysis project. It does not matter how well your models and visualisation
have led you to understand the data, unless you can also communicate your results
to others.

Surrounding all these tools is programming. This is a tool that you use in every
part of the analysis.

Import Tidy

Transform Visualise

Model

Understand

Communicate

Program

Figure 3.1: Stages of data analysis

This list provides an overview of the main tidyverse packages and how they
fit into this typical workflow.

Import Reading datasets from various data sources.

• readr

• readxl

• haven

• httr

• rvest

• xml2

Tidy Clean up datasets.

21

• tibble

• tidyr

Transform Aggregate, change variable format and derive new variables.

• dplyr

• forcats

• hms

• lubridate

• stringr

Visualise Creating charts using the Grammar of Graphics.

• ggplot2

Model Train and test statistical models.

• broom

• modelr

Program Coding in pipeline-style.

• magrittr

• purrr

In most cases, data does not come to you in exactly the right format. Often you
need to compute new variables, or to summarise and rename the original ones. In
some cases, you may have to reorder the observations to make the data easier to
work with. An excellent package for these tasks is the dplyr package. There are
five key functions in this package that allow you to solve the vast majority of data
manipulation challenges.

• Subset the observations by criteria - filter()

• Reorder the observations - arrange()

• Pick variables by name - select()

• Compute new variables as a function of existing variables - mutate()

• Collapse many values down to a single summary value - summarise() or
summarize()

22 CHAPTER 3. DATA TRANSFORMATION

All aforementioned functions work similarly. The first argument is a data frame
containing the source data. The subsequent arguments describe what to do with the
data. All the functions return the processed data in a new data frame. These
can all be used in conjunction with the group_by() function, which changes
the scope of each function from operating on the entire dataset to operating on it
group-by-group.

3.1 Filtering

You can use the function filter() to subset observations based on their values.
The first argument is a data frame, while the subsequent arguments are the
filtering expressions.

For filtering you can use the standard comparison operators (>, >=, <, <=, !=
(not equal), and == (equal)). To combine multiple filtering arguments, you can
separate them with a comma or use the & symbol. In addition, logical operators can
be used for more complex combinations.

Figure 3.2: Logical operators in R

Missing values are represented in R as NA. They are contagious because any
operation involving an unknown value will produce unknown results.

The function filter() only includes rows where the condition is TRUE. It
excludes both FALSE condition and NA values.

You can use the function is.na() to determine whether a value is missing.
You can also use this to explicitly include missing values in a filter() call.

3.1. FILTERING 23

In example 3.1.1, We will learn how to use tidyverse using a dataset on
flights departing from New York City in 2013.

R Example 3.1.1

load the required packages
library(dplyr)
library(nycflights13)
Inspect the data, noting the type of each variable
flights
View the flights dataset interactively
View(flights)
Select all flights on January 1st
Assigning them to a new variable jan1
jan1 <- filter(flights, month == 1, day == 1)
jan1
Select all flights from November or December
filter(flights, month == 11 | month == 12)
A useful shorthand for this problem is x %in% y
It selects every row where x is one of the values in y
filter(flights, month %in% c(11, 12))
Let’s select only the flights that weren’t delayed
(on arrival or departure) by more than two hours:
filter(flights, arr_delay <= 120, dep_delay <= 120)

Exercise 6 Filtering Observations

Find all flights in the flights dataset that:

1. Had an arrival delay of two or more hours.

2. Flew to Houston (IAH or HOU).

3. Were operated by United (UA), American (AA) or Delta (DL).

4. Departed in summer (July, August and September)

5. Arrived more than two hours late, but did not leave late.

6. Had a departure delay of least an hour, but made up over 30 minutes in flight.

7. How many flights have a missing dep_time? What other variables are
missing?

24 CHAPTER 3. DATA TRANSFORMATION

3.2 Sorting

The function arrange() changes the order of observations in a dataset. It sorts
the observations by a specified set of variable names2 in ascending order.

If you provide more than one variable name, each additional variable will be
used to break ties in the values of the preceding variable. Use desc() to reorder a
variable in descending order. Missing values are always sorted at the end. Example
3.2.1 shows how the arrange() function can be used.

R Example 3.2.1

Arrange flights by year, then month, then day
arrange(flights, year, month, day)
Use desc() to reorder by a column in descending order
arrange(flights, desc(arr_delay))
Missing values are always sorted at the end:
df <- tibble(x = c(5, 2, NA))
arrange(df, x)
arrange(df,desc(x))

Exercise 7 Arranging Observations

Sort the flights dataset to find:

1. The fastest (in terms of flight time) flights.

2. The fastest (in terms of average speed in mph).

3. The flights that departed the most ahead of time.

4. The flights that were most delayed on departure.

5. Which flights travelled the furthest?

3.3 Subsetting Variables

It is not uncommon to get datasets with hundreds or even thousands of variables. In
this case, the first challenge is often narrowing in on the variables you are actually
interested in.

2More complicated expressions can also be used for ordering.

3.3. SUBSETTING VARIABLES 25

The select() function allows you to rapidly zoom in on a useful subset using
operations based on the names of the variables.

There are a number of helper functions you can use within select(). These
are also shown in example 3.3.1:

1. starts_with("abc") matches variable names that begin with "abc".

2. ends_with("xyz") matches variable names that end with "xyz".

3. contains("ijk") matches variable names that contain "ijk".

4. num_range("x", 1:3) matches x1, x2, and x3.

The function select() can in principle be used to rename variables, but it
drops all of the variables not explicitly mentioned. Therefore it is better to use the
rename() function which keeps all variables not explicitly mentioned.

Another option is to use select() in conjunction with the everything()
helper. This is useful if you want to move several variables to the start of the
data frame.

R Example 3.3.1

Select columns by name
select(flights, year, month, day)
Select all columns between ‘year’ and ‘day’ (inclusive)
select(flights, year:day)
Select all columns except those from year to day (inclusive)
select(flights, -(year:day))
Rename a variable using rename()
rename(flights, tail_num = tailnum)
Select all columns starting with "sched"
select(flights, starts_with("sched"))
Reorder columns using the everything() helper
select(flights, time_hour, air_time, everything())

Exercise 8 Selecting Variables

1. Can you find two ways to select dep_time, dep_delay, arr_time and
arr_delay from the flights dataset in one line of code?

2. What happens if you include the name of a variable multiple times in a
select() call?

26 CHAPTER 3. DATA TRANSFORMATION

3. 3) Run the following code: select(flights, contains("TIME")).
Note the result. What happens when you add the argument ignore.case = TRUE
in the contains() function? What does this tell you about this helper func-
tion?

3.4 Compute Variables

In the data transformation process, it is often useful to compute new variables that
are functions of existing ones. For this we can use the mutate() function. This
function always adds new variables at the end of the dataset. Alternatively, you
can use the transmute() function if you only want to keep the newly-computed
variables and remove the old ones. For both mutate() and transmute(), you
can refer to columns that you have just created in the same function call.

There are many useful creation functions you can use with mutate() to create
new variables:

Arithmetic operators The operators +, -, *, /, ^ are all vectorised using the
so-called ’recycling rules’ (i.e. if one parameter is shorter than the other, it
will be automatically extended to be the same length.)

Modular arithmetic %/% for integer division (discards remainder) and %% for
remainder only (modulo).

Logs Very useful for dealing with data that ranges across multiple orders of magni-
tude.

Logical comparison <, <=, >, >=, !=

Ranking There are several of these – the most common one is min_rank()
which does the most usual type of ranking (e.g. first, second, third, fourth)
and gives the smallest values the smallest ranks.

In example 3.4.1, we will start by creating a narrower dataset so we can see the
new variables.

R Example 3.4.1

Select several columns only
flights_sml <- select(flights,

year:day,

3.5. SUMMARISING 27

ends_with("delay"),
distance,
air_time)

Use this smaller data frame to derive new columns
mutate(flights_sml,

gain = arr_delay - dep_delay,
speed = distance / air_time * 60)

You can refer to columns that you have just created
mutate(flights_sml,

gain = arr_delay - dep_delay,
hours = air_time / 60,
gain_per_hour = gain / hours)

Keep only the new variables using transmute()
transmute(flights,

gain = arr_delay - dep_delay,
hours = air_time / 60,
gain_per_hour = gain / hour)

Modular arithmetic: modulo
7 %% 2
Modular arithmetic: integer division
7 %/% 2
Compute hour and minute from dep_time
transmute(flights,

dep_time,
hour = dep_time %/% 100,
minute = dep_time %% 100)

Example of ranking
y <- c(1, 2, 2, NA, 3, 4)
min_rank(y)

Exercise 9 Computing New Variables

1. Currently dep_time and sched_dep_time are convenient to look at
but hard to compute with because they’re not really continuous numbers.
Convert them to a more convenient representation of number of minutes since
midnight.

2. Compare air_time with arr_time - dep_time (you will need to
convert these to units of minutes after midnight - see Q1). What do you
expect to see? What problem do you see? Why might this be?

3. What does 1:3 + 1:10 return and why? How about 1:3 + 1:9?

3.5 Summarising

The last key function is summarise() or summarize(). It collapses a set
of values into one. This function is particularly useful when used in conjunction
with group_by(). This changes the unit of analysis from the whole dataset to

28 CHAPTER 3. DATA TRANSFORMATION

individual groups. Then you can use functions on the grouped data frame in
order to obtain grouped summaries. These summary functions can be used in the
summarise() function:

Measures of location Arithmetic average mean() and median median().

Measures of spread Standard deviation sd() and interquartile range IQR().

Measures of rank Minimum value min(), maximum value max() as well as the
quantiles quantile()

Measures of position first() and last()

Whenever doing any aggregation, it is always a good idea to include either the
total count n() or the count of non-missing values sum(!is.na(x)). To count
the number of unique values, use n_distinct(). By including count statistics,
you can make sure that you are not drawing conclusions based on small amount of
data.

When combining several operations, it is usually better to join them together
using the pipe operator %>% rather than repeatedly making new variables. This is
illustrated in example 3.5.1.

R Example 3.5.1

Example of summarise() function alone
You can also use summarize() - they are equivalent
summarise(flights, delay = mean(dep_delay, na.rm = TRUE))
Combining summarise() with group_by() and a dplyr verb
by_day <- group_by(flights, year, month, day)
summarise(by_day, delay = mean(dep_delay, na.rm = TRUE))
Multiple operations without a pipe
by_dest <- group_by(flights, dest)
delay <- summarise(by_dest,

count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE))

filter(delay, count > 20)
There are three steps to prepare the flight delay data:
1) Group flights by destination
2) Summarise average distance, delay and number of flights
3) Filter to remove noisy points
They can be chained together using pipeline '%>%'
mySummary <- flights %>%

group_by(dest) %>%
summarise(
count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE)) %>%

filter(count > 20)
Using summarise() to measure standard deviation

3.5. SUMMARISING 29

Distance to some destination has larger spread than others
flights %>%

group_by(dest) %>%
summarise(dist_sd = sd(distance, na.rm = TRUE)) %>%
arrange(desc(dist_sd))

Exercise 10 Grouped Summaries

1. Which carrier has the worst delays?

2. For each destination, compute the total minutes of delay. For each flight,
compute the proportion of the total delay for its destination.

30 CHAPTER 3. DATA TRANSFORMATION

Chapter 4

Regression Models

The regression model is one of the most widely used statistical techniques in the
realm of supervised learning. It quantifies the relationship between a dependent
variable Y and an independent variable X , where Y ⊆ R and X = {x1, x2, ...xM}.

4.1 Linear Regression

Linear regression1 is a very popular parametric statistical technique. It can quantify
the effects of each input variable. It also informs users whether the effects are
statistically significant or not.

In a univariate scenario where x is the only input, it provides the best fit for the
model equation ŷi = β0 + β1xi. The parameter β0 is normally referred to as the
intercept, while the β1 value is called the slope.

The simple linear model can be extended to include a high-order polynomial
term of a variable x. It provides higher model flexibility so that the linear model fits
the data better. For example, an M th order polynomial term has been fitted to the
dataset on the next chart. The choice of M is subjective but usually a small value of
M is desirable because it helps avoid overfitting.

The model assumes that the model residuals εi = yi − ŷi are drawn from
Gaussian distribution (i.e. having a bell-shaped curve). The goal of linear regression
is to minimise the sum of squared residuals.

In the R language you can call the function lm() to perform linear regres-

1Also called ordinary least square (OLS) regression.

31

32 CHAPTER 4. REGRESSION MODELS

sion. It requires at least two arguments (data and formula). For example,
lm(y ~ x , myData) will perform a simple univariate linear model using the
independent variable x to predict the dependent variable y in the data frame object
myData.

Dummy variables can be easily created from categorical labels. Users can simply
use the syntax lm(y ~ x1 + x2, myData) where x1 is a numeric variable
and x2 either a factor or a character variable The lm function will automatically
create dummy variables on-the-fly. Normally the first category in the column will
be used as reference level.

Simple linear models are often not flexible enough to model complex variable
effects. In light of this, linear models can be made more flexible by including
polynomial terms. This can be expressed as lm(y~poly(x1,3)+x2,myData).
In this case, we are defining a cubic relationship with variable x1 and a linear
relationship with variable x2 (Five coefficients in total will be estimated, four from
the regression terms plus one from the intercept). Such a model can be expressed as
equation (4.1).

ŷi = β0︸︷︷︸
Intercept

+β1x1,i + β2x
2
1,i + β3x

3
1,i︸ ︷︷ ︸

Cubic polynomial term

+ β4x2,i︸ ︷︷ ︸
Linear term

(4.1)

Interaction refers to the combined effect2 of more than one independent variables.
For example, the independent variables x1 and x2 might have no effect on the
dependent variable y alone. However, the effect on y can become prominent
when these two variables are combined. In R language you can use the syntax
lm(y ~ x1*x2) to represent the relationship. The function I(x1*x2) can be
used to supress the interaction term and the arguments will be treated as simple
arithmetic operations.

Exercise 11 Simple Linear Regression

In this exercise, we are going to predict car efficiency using the mtcars
teaching dataset. The dataset is embedded in open source R and can be called
directly by mtcars. In example 4.1.1,you can peek at the dataset by executing
head(mtcars) or tail(mtcars). You can also read the dataset definition by
executing the command ?mtcars.

2Also known as synergy effect.

4.1. LINEAR REGRESSION 33

R Example 4.1.1

#Load the dataset into your local environment.
data(mtcars)
Browse the top few rows
head(mtcars)
Browse the last few rows
tail(mtcars)

Before running any models, we can explore the dataset a bit further through
visualisation. The R package ggplot2 is a very popular visualisation add-in. It
builds charts by stacking layers of graphics on it. Example 4.1.2 shows how you
can use ggplot2 to visualise the dataset.

34 CHAPTER 4. REGRESSION MODELS

R Example 4.1.2

Create a simple histogram using base R plot
hist(mtcars$mpg)
Using dplyr pipeline style code (equivalent output)
library(dplyr)
mtcars$mpg %>% hist()
Plot histogram using ggplot2 package
library(ggplot2)
mtcars %>%

ggplot(aes(x=mpg)) +
geom_histogram() +
labs(x="Miles-per-gallon",

y="Count",
title="Histogram showing the distribution of car performance")

Scatterplot showing the relationship between mpg and wt
library(ggplot2)
mtcars %>%

ggplot(aes(x=wt, y=mpg, colour=factor(cyl))) +
geom_point() +
labs(x="Weight",

y="Miles-per-gallon",
colour="Number of cylinders",
title="Scatterplot showing car weight against performance")

Create a boxplot showing mpg distribution of different gear types
mtcars %>%

ggplot(aes(x=factor(am,
levels = c(0,1),
labels = c("Automatic", "Manual")), y=mpg)) +

geom_boxplot() +
labs(x="Gear type",

y="Miles-per-gallon")
Draw a scatterplot with facets to visualise multiple variables
mtcars %>%

ggplot(aes(x=hp, y=mpg, colour=factor(gear), size=disp)) +
geom_point() +
facet_grid(. ~ cyl) +
labs(x="Horsepower",

y="Miles-per-gallon",
colour="Number of gears",
size="Displacement")

Draw a matrix scatterplot
pairs(mtcars)
Load the package GGally
It is an extension of the ggplot2 package
Use ggpairs to draws a prettier matrix scatterplot
library(GGally)
ggpairs(mtcars)

Now let us try to analyse car efficiency using the mpg column as dependent
variable. The hypothesis is that heavier cars have lower miles-per-gallon. We can
investigate this by building a univariate linear model using the lm() function and
analyse the results. The following code fits a univariate regression model. The
function summary(myModel1) prints out all the key results of the model. This
is demonstrated in example 4.1.3.

4.1. LINEAR REGRESSION 35

R Example 4.1.3

Build a univariate linear model
myModel1 <- lm(mpg ~ wt, mtcars)
Read the model summary
summary(myModel1)

##
Call:
lm(formula = mpg ~ wt, data = mtcars)
##
Residuals:
Min 1Q Median 3Q Max
-4.5432 -2.3647 -0.1252 1.4096 6.8727
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
wt -5.3445 0.5591 -9.559 1.29e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528,Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

The model summary contains a lot of useful information. Table 4.1 lists the key
items alongside a short description.

36 CHAPTER 4. REGRESSION MODELS

Table 4.1: Summary of key model information

Term Description

Residuals This is the unexplained bit of the model, defined as
observed value minus fitted value (ε = yi− ŷi). If the
model’s parametric assumption is correct, the mean
and median values of the residuals should be very
close to zero. The distribution of the residuals should
have equal tails on both ends.

Estimate Coefficient of the corresponding independent vari-
able (i.e. the βm values).

Standard error Standard deviation of the estimate.
t-value The number of standard deviations away from zero

(i.e. the null hypothesis).
P (> |t|) p-value of the model estimate. In general, variables

with p-value below 0.05 are considered statistically
significant.

Multiple R2 Pearson’s correlation squared which indicates
strength of relationship between the observed and
fitted values.

Adjusted R2 Adjusted version of R2.
F -statistic Global hypothesis for the model as a whole.

You can also build more complex multivariate models using the same lm()
function Example 4.1.4 shows how the function deals with nominal and ordinal
variables. You can either force the variable to become categorical by explicitly state
factor(myVar) in the formula. Alternatively, if the variable already belongs to
the factor data type, the lm() regression function would handle it automatically
without having to state it in the formula.

R Example 4.1.4

Dummy variables are automatically created on-the-fly.
The variable am has two categories
myModel2 <- lm(mpg ~ wt + hp + qsec + factor(am), mtcars)
summary(myModel2)
Build a multivariate linear model with polynomial terms.
Interaction effect can be added as well
myModel3 <- lm(mpg ~ wt + qsec + factor(am) +

factor(cyl) * disp + poly(hp, 3) +
factor(gear), mtcars)

summary(myModel3)

4.1. LINEAR REGRESSION 37

To further analyse the effects of individual variables, we can load the car
package and use the function avPlots() to view the partial regression plots3.
This would graphically display the effect of individual variables while keeping
others in control. This is shown in example 4.1.5.

R Example 4.1.5

library(car)
avPlots(myModel2)

−0.5 0.0 0.5 1.0

−
4

−
2

0
2

4

wt | others

m
pg

 |
 o

th
er

s

Fiat 128

Chrysler Imperial

Lincoln Continental
Cadillac Fleetwood

−50 0 50 100

−
2

0
2

4

hp | others

m
pg

 |
 o

th
er

s

Fiat 128Chrysler Imperial

Maserati Bora

Merc 230

−1 0 1 2 3

−
2

0
2

4

qsec | others

m
pg

 |
 o

th
er

s

Fiat 128
Chrysler Imperial

Merc 230
Maserati Bora

−0.4 −0.2 0.0 0.2 0.4

−
4

−
2

0
2

4

factor(am)1 | others

m
pg

 |
 o

th
er

s

Fiat 128Chrysler Imperial

Volvo 142E

Toyota Corona

Added−Variable Plots

Figure 4.1: Partial regression plots

You can also compare nested models4 using ANOVA technique. Example 4.1.6
compares three nested models by applying the Chi-square test on the model residuals

3It is also called the added-variable plot.
4Refers to models having additional predictor terms. For example, ŷ = x1 + x2 + x3 and

ŷ = x1 + x2 + x3 + x4 are both nested models of ŷ = x1 + x2.

38 CHAPTER 4. REGRESSION MODELS

to check for statistically significant differences. In most cases, the simplest model is
prefereable if the candidate models are not significantly different.

R Example 4.1.6

Compare linear regression models using Chi-square test
Testing whether myModel2 and myModel3 are different from myModel1
anova(myModel1, myModel2, myModel3, test="Chisq")

Exercise 12 Regression Diagnostics

Linear regression is a parametric statistical method which has strong underlying
assumptions. Analysing the model’s diagnostic measurements would help us assess
whether the assumptions are sufficiently met. You may use the plot() function
to create a series of regression diagnostic plots. The command in example 4.1.7
generates several diagnostic plots for a standard linear regression model object.

R Example 4.1.7

plot(myModel3)

4.1. LINEAR REGRESSION 39

15 20 25 30

−
3

−
2

−
1

0
1

2
3

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

Pontiac FirebirdChrysler Imperial

Fiat X1−9

−2 −1 0 1 2

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

2.
0

Theoretical Quantiles
S

ta
nd

ar
di

ze
d

re
si

du
al

s

Normal Q−Q

Chrysler ImperialPontiac Firebird

Ford Pantera L

15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
Chrysler ImperialPontiac Firebird

Ford Pantera L

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

1

0.5

Residuals vs Leverage

Maserati BoraMerc 240D

Ford Pantera L

Figure 4.2: Regression diagnostic plots

Residuals vs Fitted Checks for non-linear relationship. For a good linear fit, resid-
uals are normally distributed along a straight line centred at zero (i.e. a
horizontal line). Contrarily, curvy lines indicate poor model fit with possible
non-linear effects.

Normal Quantile-Quantile One of the main assumptions of linear regression is
that the residual is drawn from a zero-centred Gaussian distribution εi ∼
N (0, σ2). To verify whether the proposed model satisfies this assumption,
we can use a normal quantile-quantile plot (Q-Q plot) to perform a quick
check. It aligns the model residuals against a theoretical normal distribution.
If the residuals spread along a straight line on the Q-Q plot, it suggests that
the residuals are normally distributed. Alternatively, if the data points deviate
from the line it indicates vice versa. In this case, the parametric model
assumption does not hold and you might have to consider improving your
model.

Scale-Location Shows the distribution of the standardised residuals along the

40 CHAPTER 4. REGRESSION MODELS

range of fitted values. As the standard linear model is assumed to be ho-
moscedastic, the residual variance should not vary along the range of fitted
values (i.e. expect a near-horizontal line). If the standardised residuals form a
distinguishable pattern (e.g. fanning out or curvy), then the model may be
heteroscedastic and hence violate the underlying assumption.

Residual vs Leverage (Cook’s Distance) Observations having high leverage pose
greater influence to the model. This means that the model estimates are
strongly affected by these cases. If such obserations have high residuals (i.e.
large Cook’s distance), they can sometimes be considered as outliers. On
the other hand, most observations would have low leverage and short Cook’s
distance. This means that the model estimates would not have varied a lot if
few such observations were to be added or discarded.

Exercise 13 Model Overfitting

Linear regression can be made more flexible by increasing the order of the poly-
nomial terms. This allows the linear model to capture non-linear effects. However,
a flexible model also risks overfitting the data. This means that the model might
appear to have very good fit during training, but it may fit poorly when it is tested
on new data. In general, overfitted models have very little inferential power and
are ungeneralisable. The code snippet in example 4.1.8 runs a linear model with
variable level of flexibility.

R Example 4.1.8

Bivariate linear model with polynomial terms
You can change the values here.
J <- 3
K <- 2
myModel4 <- lm(mpg ~ poly(wt,J) + poly(hp,K), mtcars)
summary(myModel4)
Create the base axes as continuous values
wt_along <- seq(min(mtcars$wt), max(mtcars$wt), length.out = 50)
hp_along <- seq(min(mtcars$hp), max(mtcars$hp), length.out = 50)
Use the outer product of wt and hp to run predictions for every
point on the plane
f <- function(k1, k2, model){ z <- predict(model, data.frame(wt=k1, hp=k2)) }
myPrediction <- outer(wt_along, hp_along, f, model = myModel4)
Draw the 3D plane
myPlane <- persp(x = wt_along, xlab = "Weight",

y = hp_along, ylab = "Horsepower",
z = myPrediction, zlab = "Miles-per-Gallon",
main = "Fitted vs observed values in 3D space",
theta = 30, phi = 30, expand = 0.5, col = "lightblue")

Add original data as red dots on the plane
myPoints <- trans3d(x = mtcars$wt,

y = mtcars$hp,
z = mtcars$mpg,
pmat=myPlane)

points(myPoints, col="red")

4.1. LINEAR REGRESSION 41

ŷ = β0 +
3∑
j=1

βwtjx
j
wt +

2∑
k=1

βhpkx
k
hp

Weight H
or

se
po

w
er

M
iles−per−G

allon

Figure 4.3: A less flexible model showing better generalisability

ŷ = β0 +
8∑
j=1

βwtjx
j
wt +

5∑
k=1

βhpkx
k
hp

Weight H
or

se
po

w
er

M
iles−per−G

allon

Figure 4.4: A more flexible model illutrating the risk of overfitting

42 CHAPTER 4. REGRESSION MODELS

4.2 Poisson Regression

In the previous section, the simple linear regression model assumes that the depen-
dent variable y follows a Gaussian distribution which spans the range (−∞,+∞).
Yet sometimes we would like to estimate the number of discrete events which often
a positive integer (N = {0, 1, 2, 3, ...}). In this case, Poisson regression can be used.
It is based on the Poisson distribution5 which can be found in everyday life. The
following are typical examples:

• Number of children in a household.

• Number of bank notes in a wallet.

The Poisson regression model can take into account multiple predictor variables.
Equation (4.2) shows a Poisson regression model with ŷ as the dependent variable
and M predictor variables.

ŷ = eβ0+β1x1+β2x2+...+βMxM (4.2)

0.0

0.1

0.2

0.3

0 5 10 15 20
Frequency

D
en

si
ty

1

2

3

4

5

6

7

8

Figure 4.5: Poisson distribution with different λ values

Exercise 14 Testing for Poisson Distribution

Using the mtcars dataset, we can estimate the number of carburetors (i.e.
the variable carb) in different cars. In example 4.2.1, you can use the command
hist(mtcars$carb) to draw a simple histogram. You should find that this

5A Poisson distribution is defined by a single parameter y ∼ Poisson(λ), where the mean µ and
variance σ2 are equal. i.e. λ = µ and λ = σ2

4.2. POISSON REGRESSION 43

variable 1) never goes below zero and 2) has a long but thin tail towards the positive
side . These are key signatures of a Poisson distribution.

R Example 4.2.1

Draw a simple histogram.
hist(mtcars$carb)
Compute the mean and variance.
mean(mtcars$carb)
var(mtcars$carb)

To robustly check whether a variable is truly drawn from a Poisson distribution,
you can perform a Chi-squared goodness-of-fit test. It fits the input data against a
theoretical Poisson distribution. Example 4.2.2 visualises the results. The vertical
bars would fill the positive space if the input data fitted well against the Poisson
distribution. This can be statistically examined by analysing the p-value of the
Chi-square test. If the p-value is small enough, we can then accept the hypothesis
that the variable is drawn from a Poisson distribution.

R Example 4.2.2

Performs the Chi-squared goodness-of-fit test.
It checks whether the variable is drawn from a Poisson distribution.
library(vcd)
gf <- goodfit(mtcars$carb, type= "poisson", method= "ML")
Plots the observed frequency vs theoretical Poisson distribution.
The hanging bars should fill the space if it is perfectly Poisson.
plot(gf)
Checks the statistical p-value of the goodness-of-fit test.
If p<=0.05 then it is safe to say that the variable is Poisson.
summary(gf)

44 CHAPTER 4. REGRESSION MODELS

−0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8

Number of Occurrences

sq
rt

(F
re

qu
en

cy
)

Figure 4.6: Goodness-of-fit test for Poisson distribution

Exercise 15 Building a Poisson Model

Example 4.2.3 trains a Poisson regression model using the mtcars dataset.
The variable carb is used as the dependent variable while hp, wt and am are used
as independent predictor variables. The regression output can be interpreted in a
similar way as the ones from the linear model.

R Example 4.2.3

Build a Poisson model to predict the number of carburetors in a car.
myPoissonModel <- glm(carb ~ hp + wt + factor(am),

family="poisson",
data=mtcars)

Read the model summary
summary(myPoissonModel)
Read the model diagnostic
plot(myPoissonModel)
Visualise the observed / fitted values as a table
tibble(observed = mtcars$carb,

fitted = myPoissonModel$fitted.values) %>% View()

4.3. LOGISTIC REGRESSION 45

4.3 Logistic Regression

Logistic regression can be used if the dependent variable is binary. This refers to
when the outcome can either be Y or ¬Y . The model estimates outcome likelihood
using the logistic function as outlined in equation (4.3). The logistic function
transforms a real-valued number X into the range (0, 1) which represents the
outcome probability P (Y) ∈ (0, 1).

P (Y) = 1
1 + e−X

(4.3)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
X

Lo
gi

st
ic

 fu
nc

tio
n

Figure 4.7: Graph showing the range of a logistic function

In a univariate scenario, the logistic function can be expressed as an equation
(4.4), where β0 represents the intercept while β1, β2, β3, ..., βM refer to the regres-
sion coefficients of the variables x1, x2, x3, ..., xM . The output P (Y) indicates the
likelihood of true outcome.

P (Y) = 1
1 + e−(β0+β1x1+β2x2+...+βMxM) (4.4)

One of the most powerful features of logistic regression is the odds ratio. It
quantifies the effects of each independent variable. It is a value indicating the change
of likelihood of the event when an independent predictor variable is increased by 1
unit. The odds ratio is defined in equation (4.5).

OR(x1) = odds(x1 + 1)
odds(x1) = eβ0+β1(x1+1)+β2x2+...+βMxM

eβ0+β1x1+β2x2+...+βMxM
= eβ1 (4.5)

46 CHAPTER 4. REGRESSION MODELS

Logistic regression can only handle binary classification problems. If the
dependent variable Y has more than two outcomes, we can use another algorithm
called multinomial logistic regression6. Such problem can also be analysed using
artificial neural networks in a much more sophisticated way which we will cover in
a later section.

Exercise 16 Building a Logistic Model

In this exercise, we will continue to use the mtcars dataset. We will build a
logistic regression model to predict whether the vehicle has automatic or manual
transmission system (using the am variable as dependent variable).

In the example 4.3.1, the model has three independent variables mpg, hp and
disp. You may run the example code to build the logistic regression model. You
may also calculate the odds ratios and analyse the effects of each variable. The last
part of the code is to calculate the model accuracy.

R Example 4.3.1

Build a logistic regression model to predict the dependent variable am
(1=manual; 0=auto)
myLogisticModel <- glm(am ~ mpg + hp + disp, family="binomial", data=mtcars)
summary(myLogisticModel)
Calculate the odds-ratios by taking the exponential of the coefficients
Can you explain the effects of each of these independent variables?
exp(myLogisticModel$coefficients)
You may also calculate the 95% confidence interval of the odds-ratio
exp(cbind(oddsratio=myLogisticModel$coefficients, confint(myLogisticModel)))
Returns the modelled probability
myProb <- predict(myLogisticModel, mtcars, type="response")
Turn the probability into a binary class (i.e. TRUE vs FALSE)
Probability > 0.5 means the vehicle likely to have manual transmission
myPrediction <- myProb > 0.5
Construct a contingency table to check correct & incorrect predictions
table(myPrediction, observed=(mtcars$am == 1))
Calculate model accuracy
(defined as the percentage of correct prediction)
myAccuracy <- sum(myPrediction==(mtcars$am == 1))/nrow(mtcars)
myAccuracy

The logistic model described in example 4.3.1 can be expressed as equation
(4.6).

P (manual) = 1
1 + e−(β0+β1xmpg+β2xhp+β3xdisp)

P (automatic) = P (¬manual)
= 1− P (manual)

(4.6)

6http://www.ats.ucla.edu/stat/r/dae/mlogit.htm

http://www.ats.ucla.edu/stat/r/dae/mlogit.htm

Chapter 5

Tree-based Methods

Tree-based algorithms belong to the supervised learning discipline. For a given set
of labelled objects, decision tree can produce a set of sequential prediction rules
based on categorical and numeric predictor variables. It is based on the concept
of prediction region (denoted asRi) which refers to a subset of the original object
space. Objects situation within the same region share the same prediction.

At the heart of tree-based method is a concept called binary recursive partition-
ing. It is a top-down process which starts from initial object space. At the first
recursion, the algorithm would split the master regionR1 into two at a cut-off point.
This produces two corresponding new regions R2 ⊆ R1 and R3 ⊆ R1 with two
distinct prediction values. The cutoff point s determines where to slice the master
region. All objects within {X|X1 < s} belong toR2 and those with {X|X1 ≥ s}
belong toR3. This process runs recursively until it hits the termination criteria.

Figure 5.1: Recursive partitioning

47

48 CHAPTER 5. TREE-BASED METHODS

5.1 Decision Trees

Decision tree is the simplest form of any tree-based model. It uses standard recursive
partitioning to produce prediction regions. Decision tree is a very generic algorithm
which fits both regression and classification problems. This means it can predict
both continuous real numbers and discrete categories depending on the type of
problem. The region prediction for a classification tree is decided by the majority
class, while the prediction for a regression tree is defined as the simple average of
all members within the region. The tree-splitting structure is called the topology,
which can be interpreted graphically in most cases.

On the downside, recursive partitioning tends to produces very complex trees
which may overfit the data. Various control parameters can be used to mitigate the
risk of overfitting. For example, recursion can terminate once all regions are small
enough to contain less than 5 objects.

Exercise 17 Growing a Decision Tree

In the R language, there are many packages which implement tree-based algo-
rithm. In exercise 5.1.1, we will use the rpart function in the rpart package to
build a simple decision tree for a regression problem. The aim of this exercise is to
predict car efficiency (mpg variable) using the mtcars dataset.

R Example 5.1.1

Load the rpart package for recursive partitioning
Load the rpart.plot package for tree visualisation
library(rpart)
library(rpart.plot)
Build a decision tree to predict mpg
myTree <- rpart(formula = mpg ~ wt + hp + factor(carb) + factor(am),

data = mtcars,
control = rpart.control(minsplit=5))

Read the tree topology
myTree
Read the detailed summary of the tree
summary(myTree)
Visualise the decision tree
rpart.plot(myTree)

5.1. DECISION TREES 49

wt >= 2.3

hp >= 137

factor(carb) = 4,8

hp < 223

wt >= 3.3

wt >= 1.9

20
100%

18
81%

15
47%

13
22%

10
6%

15
16%

17
25%

21
34%

18
9%

22
25%

30
19%

29
9%

32
9%

yes no

Figure 5.2: Decision tree for a regression problem

Exercise 18 Tree Pruning

It is a common practice to grow a complex decision tree first, and then decide
how to prune it afterwards. Removing weaker branches of the tree usually enhances
the model’s predictive power which eventually makes it more generalisable.

In exercise 5.1.2, the command printcp(myTree) returns the relative error
of the tree at each and every node. It is defined as 1−R2 and therefore always starts
with 1 at the top level. As the tree grows, the R2 value increases and approaches
1 therefore the corresponding relative error will diminish towards zero. You can
use the function prune() to remove weak branches. The complexity parameter
cp refers to the amount of error reduced when a region is split. We can specify a
threshold cp value so that branches with weak predictive power can be pruned.

R Example 5.1.2

View the cp values
plotcp(myTree)
printcp(myTree)
Prune the tree at a certain threshold cp value
You can change the threshold value
?prune
myNewTree <- prune(myTree, cp = 0.03)
rpart.plot(myNewTree, fallen.leaves = FALSE)

50 CHAPTER 5. TREE-BASED METHODS

5.2 Random Forest

Random forest is a collection of many tiny decision trees. All trees in the forest are
trained using the same dataset, but with randomly selected predictor variables. In a
random forest with P independent variables, only p < P variables are randomly
selected at each split. Such randomess causes variation among the trees. Some trees
will have strong prediction power while some others will be weaker.

Once all the trees are grown, the random forest algorithm combines the output
of all trees and uses the simple average as prediction value if it is regression problem.
Alternatively if it is a classification problem, the majority label of the region becomes
the prediction value.

It is widely recognised that the prediction accuracy of random forest is far better
than that of an individual decision tree. However, as a trade-off, random forest is
often harder to interpret manually as the decision rule becomes more complicated.

Exercise 19 Planting a Random Forest

Example 5.2.1 demonstrates how to train a random forest model. Each tree in
the forest would randomly select a few variables for assessment. You can use the
randomForest package to build random forest rapidly.

The importance of each predictor variable is indicated by the decrease of
node impurity. A powerful predictor would substantially decrease node impu-
rity. For regression, it is measured by the residual sum of squares. For classifica-
tion, the node impurity is measured by the Gini index. You can use the function
importance(myForest) or varImpPlot(myForest) to calculate the im-
portance measurement.

5.2. RANDOM FOREST 51

R Example 5.2.1

library(randomForest)
library(dplyr)
Build a random forest with 1000 trees
Each tree has 2 randomly selected variables
You can change the parameters
myForest <- randomForest(mpg ~ wt + hp + carb + am,

ntree = 1000,
mtry = 2,
data = mtcars %>% mutate(carb = factor(carb),

am = factor(am)))
Plot the error as the forest expands
plot(myForest)
Plot the distribution of tree size
treesize(myForest) %>% hist()
Model summary
myForest
Relative importance of each independent variable
importance(myForest)
varImpPlot(myForest)

52 CHAPTER 5. TREE-BASED METHODS

Chapter 6

Neural Networks

Artificial neural networks (ANN) are mathematical algorithms inspired by the
structure of the biological brains. It processes incoming information through a
non-linear mechanism in a neuron and passes on the output to another neuron.
When this process repeats many times via multiple layers of neurons, it becomes an
artificial neural network. Neural networks having a complex structure are usually
trained iteratively using backpropagation techniques over a long period of time with
massive computational power. Nowadays, many modern applications are based on
state-of-the-art neural networks, such as video analysis, speech recognition, chatbots
and machine translation.

In an ANN, each hidden neuron carries a non-linear activation function f(x).
The sigmoid function is a traditional choice of activation function for ANNs(6.1a).
It takes the weighted sum of input plus the bias unit and squashes everything into
the range (0, 1) with a characteristic sigmoidal ‘S’ shape. As the sigmoid function
is differentiable and easy to compute, it soon became a popular choice for the ANN
activation function. However, it suffers from a weak gradient when the input is far
away from zero (i.e. the neuron saturates), which makes the ANN learn very slow.

To address the problem of weak gradient, alternative activation functions have
been proposed. For instance, the hyperbolic tangent function can be used(6.1b). It
shares the same sigmoidal shape but further stretches the output to the range (−1, 1),
therefore providing stronger gradient. Yet, the gradient still suffers from saturation
when the input is too small or too large.

Different activation functions can provide stronger gradients while maintain-
ing non-linearity. For instance, the softplus function has a strong gradient (i.e.
unsaturable) for any positive input (6.1c). However, it has been considered com-
putationally costly as it contains logarithmic and exponential terms. In light of
this, a simplified version call rectified linear unit (ReLU) is usually used instead

53

54 CHAPTER 6. NEURAL NETWORKS

(6.1d). The shape of ReLU is very similar to softplus with the exception that it has
a threshold at zero. This means only positive input can lead to activation. However,
the weighted sum input can change to a negative value during training, therefore
causing the ReLU neuron to cease training. This is called the dying ReLU problem.
To avoid this, more advanced activation functions incorporate a very small gradi-
ent in the negative range to allow the neuron to recover. The output of common
activation functions are visualised in figure 6.1.

Sigmoid activation

f(x) = 1
1 + e−x

(6.1a)

Hyperbolic tangent activation

f(x) = ex − e−x

ex + e−x
(6.1b)

Softplus activation
f(x) = ln(1 + ex) (6.1c)

Rectified linear unit (ReLU)

f(x) = max(0, x) (6.1d)

−2

0

2

−2 0 2
x

f(
x)

Activation Function

Hyperbolic tangent

Linear

ReLU

Sigmoid

Softplus

Figure 6.1: Common neural activation functions

The output prediction is made at the network’s final layer. Each neuron at this
layer combines the hidden neurons’ activation though a weighted sum and adds

6.1. MULTILAYER PERCEPTRON 55

a bias adjustment term (6.2a). For regression problems, a linear activation layer
is usually used to map the output vector back into an unbounded real value range
(6.2b). For classification problems, the softmax function is used at the final output
layer. It maps the hidden layers’ activations into the range (0, 1) where the sum
of the entire output vector is restricted to 1 in order to represent class probabilities
(6.2c).

Weighted sum of hidden vector with bias adjustment

yk = βk +
H∑
h=1

wh,khh, k = 1, ...,K (6.2a)

Linear output
Ŷk = yk (6.2b)

Softmax output

Ŷk = eyk∑K
k′=1 e

yk′
(6.2c)

6.1 Multilayer Perceptron

A multilayer perceptron (MLP) is the simplest form of all neural networks. It
consists of several stacked hidden layers, where all neurons in the hidden layers are
fully interconnected.

It is common practice to use zero-centred values for neural network training1.
To achieve this, you can normalise variables into z-scores (6.3a) so that they have
similar range. For any individual value xi, the z-score can be calculated as the
distance from the arithmetic mean x̄ divided by the standard deviation σ of the
variable.

zi = xi − x̄
σ

(6.3a)

At the training phase, the network weights are usually initialised randomly.
They are then optimised through backpropagation to achieve gradient descent.
The weights improve gradually according to a predefined learning rate until they
ultimately converge to the minimum value. One of the drawbacks is that backpropa-
gation does not guarantee reaching the global minimum if there are multiple minima
across the parameter space. Such problem is usually mitigated by using advanced
optimisers with adaptive learning rate.

1Zero-centred values have a stronger gradient, thus speed up optimisation through gradient descent.

56 CHAPTER 6. NEURAL NETWORKS

Exercise 20 Training MLP for Regression Problem

There are many packages which implement neural networks. Traditional pack-
ages include neuralnets, nnet, RSNNS, caret... etc. Modern deep learning
frameworks such as h2o, MXNet and keras are also available in R, but they
usually require premium hardware set-up. In general, all neural network packages
implement the same underlying algorithm and the differences usually lie in syntax,
execution speed and hardware compatibility.

We will continue to use the mtcars dataset in this exercise. The objective
of this exercise is to predict the mpg value of each car given all other known
attributes of it. We would use the neuralnet package to create a simple multilayer
perceptron (MLP) model. The code in example 6.1.1 trains a fully-connected
multilayer perceptron with two hidden layers.

R Example 6.1.1

library(dplyr)
library(neuralnet)
The mtcars dataset has a mixture of numeric and categorical variables
For numeric variables we need to normalise them
mtcars_numeric <- mtcars %>% select(mpg, disp, hp, drat, wt, qsec)
foreach numeric variable, we calculate the mean and standard deviation
mtcars_mean <- mtcars_numeric %>% lapply(mean)
mtcars_sd <- mtcars_numeric %>% lapply(sd)
Convert the numeric variables into z-scores using the mean and sd
mtcars_numeric_normalised <- (mtcars_numeric - mtcars_mean) / mtcars_sd
Construct a two layers MLP using all numeric variables.
By default it uses sigmoid active function
myNN1 <- neuralnet(formula = mpg ~ disp + hp + drat + wt + qsec,

data = mtcars_numeric_normalised,
hidden = c(4,3),
linear.output = TRUE,
lifesign = "full")

Visualise the network topology
plot(myNN1)

Example 6.1.2 shows that you can load the package NeuralNetTools to
create a better topology plot. In addition, you can plot the observed data against
network predictions to visualise the error. For a regression problem, the mean
squared error (MSE) defined as 1

N

∑N
n=1(ŷn − yn)2 is usually used as the error

measurement.

6.1. MULTILAYER PERCEPTRON 57

R Example 6.1.2

Use a helper package for prettier graphics (optional)
library(NeuralNetTools)
plotnet(myNN1)
Calculate the network prediction
myNNResult1 <- compute(myNN1, mtcars_numeric_normalised %>% select(-mpg))
The predicted values are in scaled format (z-score)
Need to convert it back to original scale for comparison
myNNPred1 <- myNNResult1$net.result[,1] *

mtcars_sd[["mpg"]] +
mtcars_mean[["mpg"]]

Visualise the results on a scatterplot
qplot(mtcars$mpg, myNNPred1) +

labs(x="Observed MPG",
y="Predicted MPG")

Calculate model error using mean squared error (MSE)
myNNError1 <- mean((myNNPred1 - mtcars$mpg)^2)

−4.376422.
00

29
7

1.
69

15
7

−5
.7

41
08

qsec

−3.88458

−11.96487

1.
24

49
6

2.
81

63
8

wt

0.28161

−13.80878

−10.16127

−0
.3

52
19

drat

1.04316
−9.20156

5.02919

0.75656

hp
1.02417
−1.23702
1.23955

−5.73046
disp

2.786923.
32

14
7

7.
74

55
5

−1.05589

0.68915

1.
75

59
1

1.21492

−1.4471

1.32209

−5.35113
−4.21224

−4.73689

−3
.0

43
3

5.07346

−1.45401

mpg

−4.86442
9.91111

7.68812

1.02219

1

−0.17102
0.96409

1.47245

1

0.12237

1

Error: 0.111901 Steps: 2669

Figure 6.2: MLP model with two hidden layers

The sigmoid function is traditionally used in shallow networks. It can suffer
from a weak gradient when stacked in deep networks. You can use the code in
example 6.1.3 to customise the activation function.

58 CHAPTER 6. NEURAL NETWORKS

R Example 6.1.3

Build the second model
Keep everything the same but change to softplus activation
myNN2 <- neuralnet(formula = mpg ~ disp + hp + drat + wt + qsec,

data = mtcars_numeric_normalised,
hidden = c(4,3),
linear.output = TRUE,
act.fct = function(x) { log(1+exp(x)) },
lifesign = "full")

Calculate the network prediction
myNNResult2 <- compute(myNN2, mtcars_numeric_normalised %>% select(-mpg))
Convert the predicted values back to original scale
myNNPred2 <- myNNResult2$net.result[,1] *

mtcars_sd[["mpg"]] +
mtcars_mean[["mpg"]]

Calculate model error (MSE)
myNNError2 <- mean((myNNPred2 - mtcars$mpg)^2)

Neural networks can also deal with categorical inputs. They are usually con-
verted into one-hot encoding to feed into the model2. The code in example 6.1.4
converts all categorical variables in the mtcars dataset into one-hot encoding. The
encoded values are then bound to numeric values and jointly used for training.

2For a categorical variable with K unique values, one-hot encoding would produce K new
variables. Each new variable will have value {1, 0}. Please note that this is different from dummy
encoding in statistical modelling.

6.1. MULTILAYER PERCEPTRON 59

R Example 6.1.4

Loads the purrr package to access the imap function
library(purrr)
Selecting all the categorical variables in the dataset
Use the imap function to iterate through all columns
Convert all into one-hot encoding and binds back into a tibble
mtcars_encoded <- mtcars %>% select(cyl,vs,am,gear,carb) %>%
imap(function(myCol, myName) {
myUniqueValues <- unique(myCol)
myTib <- sapply(myUniqueValues,

function(myValue){ (myValue == myCol) * 1 }) %>% as_tibble
colnames(myTib) <- paste0(myName, "_", myUniqueValues)
return(myTib)

}) %>% bind_cols()
Combines all numeric and categorical variables
mtcars_all <- bind_cols(mtcars_numeric_normalised, mtcars_encoded)
Train the third model by including encoded categorical variables
myNN3 <- neuralnet(formula = mpg ~

disp + hp + drat + wt + qsec +
cyl_6 + cyl_4 + cyl_8 +
vs_0 + vs_1 +
am_1 + am_0 +
gear_4 + gear_3 + gear_5 +
carb_4 + carb_1 + carb_2 + carb_3 + carb_6 + carb_8,

data = mtcars_all,
hidden = c(4,3),
linear.output = TRUE,
act.fct = function(x) { log(1+exp(x)) },
lifesign = "full")

Visualise the network topology
plot(myNN3)
Calculate the network prediction
myNNResult3 <- compute(myNN3, mtcars_all %>% select(-mpg))
Convert the predicted values back to original scale
myNNPred3 <- myNNResult3$net.result[,1] *

mtcars_sd[["mpg"]] +
mtcars_mean[["mpg"]]

Calculate model error (MSE)
myNNError3 <- mean((myNNPred3 - mtcars$mpg)^2)
Compare the error of the three models
myNNError1
myNNError2
myNNError3

60 CHAPTER 6. NEURAL NETWORKS

1.41637

−1
.8

58
04

−0
.0

49
91

1.
25

06

carb_8
2.2977

1.
22

32
7

−0
.7

25
53

1.
62

21
9

carb_6
−0.16219

0.
86

20
7

−1
.3

26
91

0.
84

54
7

carb_3
0.372120.

88
89

3

−0
.1

06
22

1.
19

22
6

carb_2
0.51085

−0.1826

−0
.4

87
58

−4
.4

35
74

carb_1
0.3239

−2.83573

−0
.3

36
22

0.
46

32
9

carb_4
0.2317

2.02935

−1
.1

25
05

−3
.6

70
24

gear_5 2.52109

0.31345−0
.6

19
75

−0
.2

62
27

gear_3 −0.34317

−2.42813
−0.6

59
66

1.
16

35
2

gear_4 −0.68447

−0.05359

−1.52906
0.

30
52

7
am_0 −0.98612

1.63027

0.65162
1.

64
18

8
am_1 3.2874

3.63604

1.83446−0
.4

39
57

vs_1 1.57098

−1.12669

1.354071.
17

33
5

vs_0 1.69684
−1.09654

−1.31207
0.24311

cyl_8 −0.11853
−1.38292

0.38984

−2.40771

cyl_4 1.91824
−1.81176

−3.19614

1.47169
cyl_6 −0.94879

−0.31729

−2.1586

3.76267qsec −1.16565
−1.03984
1.64329

0.5326wt −0.00691
−3.11595
−1.3937

−2.43891
drat 0.60264

1.11525
−0.19538

−0.83278

hp −0.32902
0.7985
−1.03375

−0.29978

disp

−0.691831.
61

43
8

0.
38

59
6

−2.59147

−0.87798

1.
63

85
7

−1.4956

1.48676

−1.43274

−0.05777
1.84336

0.47008

3.
48

31
8

−0.23648
0.11437

mpg

−0.65567
1.02146

0.19569

−0.27681

1

1.35162
−0.32549

−1.66145

1

1.16623

1

Figure 6.3: MLP model with one-hot encoded categorical variables

Chapter 7

Time Series Analysis

Many datasets have a temporal dimension. Time series refers to a chronologically-
ordered sequence of observations. There are two main types of time series data:
1) regularly-sampled1, and 2) irregularly-sampled2 In this chapter, we would focus
on time series data sampled at regularly-spaced intervals.

Temporal properties are often the point-of-interest in time series analysis. These
include trend, seasonality, or temporal dependency between different variables.
Studying these properties can offer useful insights. For example, extrapolating
the trend can create forecasts for future scenarios. Alternatively, analysing the
seasonality can help users understand the nature of recurring patterns.

7.1 Auto-Correlation Function

The auto-correlation function (ACF) measures the correlation of a single variable
along the temporal dimension between xt and xt+h. In other words, it shows the
correlation of the variable over different lag periods.

In the R language, you may use the Acf(x) function within the package
forecast to plot the ACF correlogram. For most time series variables, correlation
is usually strong at lag h = 1 and it gradually diminishes as the lag period increases.
A cyclic pattern in the correlogram suggests possible seasonality which you can
analyse further.

On the other hand, the partial auto-correlation function (PACF) is similar to the
1Regularly sampled time series has observations taken at fixed interval. This includes examples

like heart rate, network traffic, daily weather... etc.
2Refers to observations that are not recorded at fixed interval, such as incidents of earthquakes.

61

62 CHAPTER 7. TIME SERIES ANALYSIS

ACF in the sense that it also measures the correlation between different lag periods.
The difference is that it controls the correlation across the temporal dimension so
that only the contribution of an individual lag is reflected.

Exercise 21 Loading Datasets

In this exercise, we will use an external dataset. This dataset contains daily
electricity generation and demand data published by a German transmission network
called Amprion3. The first column is a date-time variable and the rest are demand
and generation data, each sampled at 15 minutes granularity. The code in example
7.1.1 shows how to load the dataset from the CSV file.

Table 7.1: Description of the Amprion dataset

Variable Measurement Unit Description

datetime %Y-%m-%d %H:%M:%S Date and time
demand Megawatt Demand in control area
pv Megawatt Photovoltaic feed-in
wp Megawatt Wind power feed-in

R Example 7.1.1

Read the Amprion dataset from CSV file
You might have to modify the path to point to your file location
library(readr)
amprion <- read_csv("amprion.csv")
View the dataset
amprion

A tibble: 140,240 x 4
datetime demand pv wp
<dttm> <dbl> <dbl> <dbl>
1 2014-01-01 00:00:00 16231 0 1498
2 2014-01-01 00:15:00 16125 0 1449
3 2014-01-01 00:30:00 16066 0 1411
4 2014-01-01 00:45:00 16137 0 1438
5 2014-01-01 01:00:00 16045 0 1256
6 2014-01-01 01:15:00 15851 0 1242
7 2014-01-01 01:30:00 15729 0 1216
8 2014-01-01 01:45:00 15498 0 1312
9 2014-01-01 02:00:00 15417 0 1473
10 2014-01-01 02:15:00 15471 0 1676
... with 140,230 more rows

3Amprion - Demand in Conrrol Area https://www.amprion.net/Grid-Data/
Demand-in-Control-Area/

https://www.amprion.net/Grid-Data/Demand-in-Control-Area/
https://www.amprion.net/Grid-Data/Demand-in-Control-Area/

7.1. AUTO-CORRELATION FUNCTION 63

One of the main drivers of power demand and generation is the weather. The
weather dataset is published by the Deutscher Wetterdienst4. Weather observations
are recorded every hour at the Bremen weather station. You can follow the code in
example 7.1.2 to load the dataset.

Table 7.2: Description of the Bremen weather dataset

Variable Measurement Unit Description

datetime %Y-%m-%d %H:%M:%S Date and time
airtemp Degree Celsius Air temperature
sun Jcm−1 Short-wave global radiation
windspd msec−1 Wind speed
winddir Bearing Wind direction
soil10 Degree Celsius Soil temperature at 10cm depth
soil20 Degree Celsius Soil temperature at 20cm depth
soil50 Degree Celsius Soil temperature at 50cm depth
soil100 Degree Celsius Soil temperature at 100cm depth

R Example 7.1.2

Load the Bremen weather dataset
bremen <- read_csv("bremen.csv")
View the dataset
bremen

A tibble: 79,669 x 9
datetime airtemp sun windspd winddir soil10 soil20 soil50
<dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2009-01-01 01:00:00 -2.5 0 3.8 350 -1.8 -1.5 -0.6
2 2009-01-01 02:00:00 -2.7 0 3.8 350 -1.7 -1.4 -0.6
3 2009-01-01 03:00:00 -2.8 0 1.6 40 -1.7 -1.3 -0.6
4 2009-01-01 04:00:00 -2.4 0 1.2 220 -1.6 -1.3 -0.5
5 2009-01-01 05:00:00 -2.2 0 1.8 260 -1.5 -1.2 -0.5
6 2009-01-01 06:00:00 -1.9 0 2.7 260 -1.5 -1.2 -0.5
7 2009-01-01 07:00:00 -1.6 0 2.6 250 -1.4 -1.1 -0.5
8 2009-01-01 08:00:00 -1.3 0 3 250 -1.3 -1.1 -0.5
9 2009-01-01 09:00:00 -0.8 2 2.6 260 -1.1 -1 -0.5
10 2009-01-01 10:00:00 0 11 3 250 -0.9 -0.9 -0.5
... with 79,659 more rows, and 1 more variable: soil100 <dbl>

Before moving on to further analyses, we need to aggregate the two datasets
into the same granularity. Once this is done, we can join the two datasets together

4DWD Climate Data Center https://www.dwd.de/EN/climate_environment/cdc/
cdc_node.html

https://www.dwd.de/EN/climate_environment/cdc/cdc_node.html
https://www.dwd.de/EN/climate_environment/cdc/cdc_node.html

64 CHAPTER 7. TIME SERIES ANALYSIS

to form one table containing all variables. Example 7.1.3 shows how to use an
SQL-like pipeline in dplyr to aggregate and join the two datasets.

R Example 7.1.3

Load the lubridate package to access more datetime functions
library(lubridate)
Load the dplyr package for data wrangling
library(dplyr)
Aggregate the amprion dataset from 15 minutes to daily level.
amprion_daily <- amprion %>%

mutate(date = datetime %>%
ymd_hms() %>%
floor_date("day") %>%
as.Date()) %>%

group_by(date) %>%
summarise(total_demand = sum(demand),

total_pv = sum(pv),
total_wp = sum(wp))

Aggregate the bremen dataset from hourly to daily.
bremen_daily <- bremen %>%

mutate(date = datetime %>%
ymd_hms() %>%
floor_date("day") %>%
as.Date()) %>%

group_by(date) %>%
summarise(mean_airtemp = airtemp %>% mean(),

max_sun = sun %>% max(),
mean_windspd = windspd %>% mean(),
mean_soil10 = soil10 %>% mean(),
mean_soil20 = soil20 %>% mean(),
mean_soil50 = soil50 %>% mean(),
mean_soil100 = soil100 %>% mean())

Join the two daily datasets together into a common table
myTable <- amprion_daily %>%
left_join(bremen_daily, by = "date")

Plots the daily total demand
myTable %>%
ggplot(aes(x=date, y=total_demand)) +
geom_line() +
labs(x = "Date",

y = "Power Demand (MW)")

Exercise 22 Analysing Temporal Correlation

You can use the code in example 7.1.4 to create the ACF and PACF correl-
ograms. In addition, you can use the Ccf() or ggCcf() function to create a
cross-correlation function (CCF) correlogram. It analyses the temporal correlation
between two variables.

7.1. AUTO-CORRELATION FUNCTION 65

R Example 7.1.4

Load the forecast package
library(forecast)
Plots the ACF correlogram only
There are several ways to create plots.
ggAcf(myTable$total_demand) # More pretty
Acf(myTable$total_demand) # Standard base R plot
Plots the PACF correlogram only.
ggPacf(myTable$total_demand)
Pacf(myTable$total_demand)
Draw a CCF correlogram which find the correlation between two variables.
You can try swapping variables here.
ggCcf(x = myTable$mean_airtemp,

y = myTable$total_demand)
Ccf(x = myTable$mean_airtemp,

y = myTable$total_demand)
Constructs the several key plots in one go.
ggtsdisplay(myTable$total_demand)
tsdisplay(myTable$total_demand)
Create a lag plot
gglagplot(myTable$total_demand, lags = 28)
lag.plot(myTable$total_demand, lags = 28)

Total daily power demand (MW)

0 500 1000 1500

16
00

00
0

22
00

00
0

0 20 40 60 80 100 120

−
0.

4
0.

0
0.

4
0.

8

Lag

A
C

F

0 20 40 60 80 100 120

−
0.

4
0.

0
0.

4
0.

8

Lag

PA
C

F

Figure 7.1: ACF and PACF correlograms

66 CHAPTER 7. TIME SERIES ANALYSIS

lag 1m
yT

ab
le

$t
ot

al
_d

em
an

d
14

00
00

0
22

00
00

0

1600000 2400000

lag 2m
yT

ab
le

$t
ot

al
_d

em
an

d

lag 3m
yT

ab
le

$t
ot

al
_d

em
an

d

1600000 2400000

lag 4m
yT

ab
le

$t
ot

al
_d

em
an

d

lag 5m
yT

ab
le

$t
ot

al
_d

em
an

d

1600000 2400000

lag 6m
yT

ab
le

$t
ot

al
_d

em
an

d

lag 7m
yT

ab
le

$t
ot

al
_d

em
an

d

1600000 2400000

lag 8m
yT

ab
le

$t
ot

al
_d

em
an

d

lag 9m
yT

ab
le

$t
ot

al
_d

em
an

d

lag 10m
yT

ab
le

$t
ot

al
_d

em
an

d
lag 11m

yT
ab

le
$t

ot
al

_d
em

an
d

lag 12m
yT

ab
le

$t
ot

al
_d

em
an

d

lag 13m
yT

ab
le

$t
ot

al
_d

em
an

d

lag 14m
yT

ab
le

$t
ot

al
_d

em
an

d

14
00

00
0

22
00

00
0

lag 15m
yT

ab
le

$t
ot

al
_d

em
an

d
14

00
00

0
22

00
00

0

lag 16m
yT

ab
le

$t
ot

al
_d

em
an

d

lag 17m
yT

ab
le

$t
ot

al
_d

em
an

d

lag 18m
yT

ab
le

$t
ot

al
_d

em
an

d
lag 19m

yT
ab

le
$t

ot
al

_d
em

an
d

lag 20m
yT

ab
le

$t
ot

al
_d

em
an

d

lag 21m
yT

ab
le

$t
ot

al
_d

em
an

d

lag 22m
yT

ab
le

$t
ot

al
_d

em
an

d

lag 23m
yT

ab
le

$t
ot

al
_d

em
an

d

1600000 2400000
lag 24m

yT
ab

le
$t

ot
al

_d
em

an
d

lag 25m
yT

ab
le

$t
ot

al
_d

em
an

d

1600000 2400000
lag 26m

yT
ab

le
$t

ot
al

_d
em

an
d

lag 27m
yT

ab
le

$t
ot

al
_d

em
an

d

1600000 2400000
lag 28m

yT
ab

le
$t

ot
al

_d
em

an
d

14
00

00
0

22
00

00
0

Figure 7.2: Lag plots showing the correlation of various lag periods

7.2 Decomposition

Time series can be either additive or multiplicative. Additive time series can be
generally described as Xt = St + Tt + εt where St refers to the seasonality at
time t while Tt refers to the trend component at time t. The observed data Xt is
simply the sum total of the trend, seasonal and error components. Alternatively, a
multiplicative time series is defined as Xt = St × Tt × εt. These components can
be easily decomposed from the observed values.

Exercise 23 Identifying the Trend and Seasonal Components

To analyse the seasonality of a time series, you need to find out the ideal fre-
quency of the seasonal component. Example 7.2.1 uses the function findfrequency()
to identify the frequency for a given time series. It uses spectral analysis to identify
the frequency with the strongest spectral density. Once the frequency is calcu-
lated, we can build a ts object using the calculated frequency value. The func-
tion decompose() converts the observed time series into a trend component
Tt ∈ [1, T], a seasonal component St ∈ [1, T] and random residuals εt ∈ [1, T].

7.2. DECOMPOSITION 67

The code also divides the dataset into a training and a testing set. The training
set is used to run analyses and train models. Once the models are trained, they are
applied to the testing set to assess model performance.

R Example 7.2.1

Divide the dataset into training and testing set
TEST_SET_BEGIN <- "2017-01-01"
myTrainingSet <- myTable %>% filter(date < TEST_SET_BEGIN)
myTestingSet <- myTable %>% filter(date >= TEST_SET_BEGIN)
Automatically search for ideal frequency using training data
We would expect the frequency to be 7 (weekly pattern)
myFreq <- findfrequency(myTrainingSet$total_demand)
Check the calculated frequency
myFreq
Define a seasonal time series object using the frequency value
myTs <- ts(data = myTrainingSet$total_demand,

frequency = myFreq)
Decompose the time series into its constituent components
myDecomp <- decompose(myTs,

type = "additive")
View the decomposed components
autoplot(myDecomp)
plot(myDecomp)

16
00

00
0

22
00

00
0

ob
se

rv
ed

17
00

00
0

21
00

00
0

tr
en

d

−
3e

+
05

0e
+

00

se
as

on
al

−
3e

+
05

1e
+

05

0 50 100 150

ra
nd

om

Time

Decomposition of additive time series

Figure 7.3: Decomposing an additive time series

Exercise 24 Linear Time Series Forecast

68 CHAPTER 7. TIME SERIES ANALYSIS

In this exercise, we will build a simple forecasting model using the trend and
seasonal components as independent variables. The mathematical formula of a
linear model with M predictor variables can be expressed as (7.1). The code in
example 7.2.2 shows how to build a time series linear regression model with several
covariate variables as predictors. It also visualises the forecast output as a chart.
The coloured area surrounding the line represents the confidence interval of your
prediction.

Xt = β0 + βtrendTt + βseasonalSt +
M∑
m=1

(βmxmt) + εt (7.1)

R Example 7.2.2

library(forecast)
Perform linear regression model with decomposed time series components
You can also add interaction and polynomial terms here
myTsModel1 <- tslm(myTs ~ trend + season +

mean_airtemp * mean_windspd +
poly(max_sun,degree = 2) +
mean_soil10 + mean_soil20,

data = myTrainingSet)
View model summary
summary(myTsModel1)
Produce forecast using the testing set
myTsForecast1 <- forecast(object = myTsModel1,

newdata = myTestingSet)
Visualise the forecast
autoplot(myTsForecast1)
plot(myTsForecast1)
Calculate the model performance by comparing with the testing set
Using mean squared error (MSE) here.
myTestError1 <- mean((myTsForecast1$mean - myTestingSet$total_demand)^2)

Forecasts from Linear regression model

0 50 100 150 200

14
00

00
0

24
00

00
0

Figure 7.4: Linear time series forecasting with trend and seasonal components

7.3. ARIMA MODEL 69

To compare the time series regression model output with standard regression,
you can run a simple linear regresion model using the same set of predictor variables
with the lm() function. This is shown in example 7.2.3.

R Example 7.2.3

myTsModel2 <- lm(myTs ~ mean_airtemp * mean_windspd +
poly(max_sun,degree = 2) +
mean_soil10 + mean_soil20,
data = myTrainingSet)

View model summary
summary(myTsModel2)
Calculate model prediction using testing set
myTsForecast2 <- predict(object = myTsModel2,

newdata = myTestingSet)
Calculate testing MSE
myTestError2 <- mean((myTsForecast2 - myTestingSet$total_demand)^2)
Compare the testing error (MSE) of these two models
Which one is a better model?
myTestError1
myTestError2
Visualise the predictions of the two models
ggplot() +

geom_line(aes(x=date, y=total_demand), myTrainingSet) +
geom_line(aes(x=date, y=myTsForecast1$mean, colour="blue"),

myTestingSet) +
geom_line(aes(x=date, y=myTsForecast2, colour="green"),

myTestingSet) +
scale_colour_manual(guide = "legend", name = "Model",

values =c("blue"="blue",
"green"="green"),

labels = c("Time Series Regression Model",
"Simple Linear Regression")) +

labs(x="Date",
y="Total Demand (MW)") +

theme(legend.position = "bottom")

7.3 ARIMA Model

ARIMA is the acronym for Auto-Regressive Integrative Moving Average model. It
is a statistical technique which incorporates lag within the model. It can be described
as the combination of three separate parts: autoregression, integration and moving
average. ARIMA has three corresponding parameters p,d,and q which is normally
expressed as ARIMA(p, d, q) or as separate terms AR(p), I(d) and MA(q).

The AR(p) part suggests that observation Xt is dependent on the linear com-
bination of lagged terms up to p lag periods. A pure AR(p) model is expressed
as Xt =

∑p
i=i(φiXt−i). The moving average part MA(q) indicates the residual

is inherited from up to q lag periods. A pure MA(q) model can be expressed as
as Xt =

∑q
i=1(θiεt−i) + εt. As a result, a simple ARMA(p, q) model can be

70 CHAPTER 7. TIME SERIES ANALYSIS

expressed as the following where φi and θi are model coefficients, while Xt−i
represents observed data at ith lag step and εt−i refers to the random error at the ith

lag step (7.2).

Xt︸︷︷︸
Observation

= β0︸︷︷︸
intercept

+
p∑
i=i

(φiXt−1)︸ ︷︷ ︸
AR(p)

+
q∑
i=1

(θiεt−i)︸ ︷︷ ︸
MA(q)

+ εt︸︷︷︸
residual

(7.2)

The ARIMA model assumes that the time series conforms to stationarity5. The
integrative component I(d) ensures stationarity by taking d number of integrative
steps over time. A first order integrative model I(1) is simply the difference
between the current step and the immediate previous lag step. It is expressed as
X

′
t = Xt −Xt−1. Similarly, a second order integrative model I(2) is expressed as

X
′′
t = X

′
t −X

′
t−1 = Xt − 2Xt−1 +Xt−2.

Time series data with seasonality can be expressed asARIMA(p, d, q)(P,D,Q)m
where the uppercase parameters represent the seasonal component of the model. The
m value is a positive non-zero integer indicating the frequency of the seasonality.
The estimates AR(P), I(D) and MA(Q) are linearly combined together with the
non-seasonal part to create the seasonal ARIMA (SARIMA) model.

Exercise 25 Automated ARIMA

The standard ARIMA implementation accepts six parameters p, d, q, P , D and
Q which produces a seasonal time series model. In many cases, these values are
usually not known to the user and all possible values are examined case-by-case to
get the best fit.

In the forecast package6, you may use the function Arima() to experiment
parameters manually. Alternatively, it is quite common to use an automated method
to search for good parameters. The method auto.arima() tries all parameter
values within the given constraints. It can also fit linear regression using predictor
variables if the xreg attribute is supplied to the function. This is considerably
slower than the Arima() function due to overhead for parameter search. Example
7.3.1 demonstrates parameter searching using automated ARIMA.

5A stationary time series has consistent statistical properties across all time, such as equal mean
and variance.

6The package author has published a detailed book: https://www.otexts.org/fpp/

https://www.otexts.org/fpp/

7.3. ARIMA MODEL 71

R Example 7.3.1

library(forecast)
library(dplyr)
Build an ARIMA model automatically
Keeping the maximum order (p+d+P+D) small
Search for seasonal model only
myTsModel3 <- auto.arima(y = myTs,

max.order = 5,
seasonal = TRUE,
xreg = myTrainingSet %>%

select(mean_airtemp,
mean_windspd,
max_sun,
mean_soil10,
mean_soil20,
mean_soil50,
mean_soil100) %>%

as.matrix(),
trace = TRUE)

View the ARIMA(p,d,q)(P,D,Q) estimates and their coefficients
summary(myTsModel3)
Run the forecast
Apply the ARIMA model to testing set
myTsForecast3 <- forecast(myTsModel3,

xreg = myTestingSet %>%
select(mean_airtemp,

mean_windspd,
max_sun,
mean_soil10,
mean_soil20,
mean_soil50,
mean_soil100) %>%

as.matrix())
Visualise the forecast
autoplot(myTsForecast3)
plot(myTsForecast3)
Calculate the MSE error using the testing set
myTestError3 <- mean((myTsForecast3$mean - myTestingSet$total_demand)^2)

Exercise 26 Custom ARIMA

After running the automated ARIMA model, you might realise that the fore-
cast tends to flat out when the forecast horizon increases. This is because the
auto.arima() function selects the best parameters based on an indicator called
AIC. It maximises the log-likelihood of the training data and gives preference to
simpler models. We can manually tweak the ARIMA model with custom parameters
using the Arima() function instead. This is demonstrated in example 7.3.2.

72 CHAPTER 7. TIME SERIES ANALYSIS

R Example 7.3.2

Use custom parameters for the ARIMA model
In this case we can try ARIMA(2,0,0)(1,1,1)
You can change the parameters here
myTsModel4 <- Arima(y = myTs,

xreg = myTrainingSet %>%
select(mean_airtemp,

mean_windspd,
max_sun,
mean_soil10,
mean_soil20,
mean_soil50,
mean_soil100) %>%

as.matrix(),
order = c(2,0,0),
seasonal = c(1,1,1))

View the model summary
summary(myTsModel4)
Apply the ARIMA model to test set
myTsForecast4 <- forecast(myTsModel4,

xreg = myTestingSet %>%
select(mean_airtemp,

mean_windspd,
max_sun,
mean_soil10,
mean_soil20,
mean_soil50,
mean_soil100) %>%

as.matrix())
Visualise the forecast
autoplot(myTsForecast4)
plot(myTsForecast4)
Calculate MSE error using the testing set
myTestError4 <- mean((myTsForecast4$mean - myTestingSet$total_demand)^2)

Forecasts from Regression with ARIMA(2,0,0)(1,1,1)[7] errors

0 50 100 150 200

14
00

00
0

24
00

00
0

Figure 7.5: Forecast generated from a seasonal ARIMA model.

Exercise 27 Model-based Simulation

7.3. ARIMA MODEL 73

With a full ARIMA(p, d, q)(P,D,Q)m model, model-based simulation can
be created very easily. The code in example 7.3.3 will generate 100 simulated runs
and plot the average of all runs as point forecast on a chart.

R Example 7.3.3

Use one of the trained ARIMA model for simulation
Wrapping the simulation in a lapply loop
mySimulation <- lapply(1:100, function(i){

tibble(date = myTestingSet$date,
run = i,
value = simulate(object = myTsModel4,

xreg = myTestingSet %>%
select(mean_airtemp,

mean_windspd,
max_sun,
mean_soil10,
mean_soil20,
mean_soil50,
mean_soil100) %>%

as.matrix()) %>%
as.numeric())})

Combines all tibbles together to form a large tibble
mySimulationAll <- do.call(rbind, mySimulation)
Calculate the mean of all simulated runs
myTsForecast5 <- mySimulationAll %>%

group_by(date) %>%
summarise(fcast = mean(value))

Visualise the simulated forecast data
ggplot() +

geom_line(aes(x=date, y=total_demand), myTrainingSet) +
geom_line(aes(x=date, y=value, group=run), mySimulationAll, alpha=0.02) +
stat_summary(aes(x=date, y=value), mySimulationAll,

fun.y = mean,
geom = "line",
colour ="blue") +

labs(x="Date",
y="Power Demand")

Calculate the MSE error
myTestError5 <- mean((myTsForecast5$fcast - myTestingSet$total_demand)^2)

At last, you can compare the performance of various models:

Linear time series model
myTestError1
Simple linear regression (not time series model)
myTestError2
Auto ARIMA model
myTestError3
ARIMA with custom parameters
myTestError4
Simulated ARIMA model
myTestError5

74 CHAPTER 7. TIME SERIES ANALYSIS

Chapter 8

Survival Analysis

Events occuring at irregular time intervals can be studied through survival analysis.
It is commonly used to analyse time-to-event in many research areas, such as
medicine, economics, engineering and biology. For example, survival analysis is
traditionally used in clinical research to analyse the effects of different drugs on
sustaining patient’s life. In this case, the time to death is used an indicator for drug
performance. We will go through several techniques in this chapter.

8.1 Kaplan-Meier Estimator

The Kaplan-Meier estimator is used to measure how many subjects have survived
in a clinical trial since treatment began. At time t 6 T , the estimator is given by
equation (8.1) where dt′ represents the number of events and nt′ represents the
number of subjects at risk.

Ŝt =
t∏

t′ =1

(
1−

dt′

nt′

)
(8.1)

Exercise 28 Fitting a Kaplan-Meier Curve

There are many implementations for survival analysis in the R language. The
most commonly used one is the survival package. You can use the survfit()
function to fit a Kaplan-Meier curve with categorical predictors.

In this exercise, we use the lung dataset within the survival package which
contains lung cancer patients’ survival time. You can use the command ?lung to

75

76 CHAPTER 8. SURVIVAL ANALYSIS

read the detailed dataset description. To fit a Kaplan-Meier curve, we need to define
the target event (i.e. death, in this example) and the time-to-event. The code in exam-
ple 8.1.1 shows how to define the Surv object using the Surv(time, event)
function. The survfit function fits a Kaplan-Meier curve against the target event
using the supplied variables.

R Example 8.1.1

Load the survival package for curve fitting
library(survival)
Use the survminer package for better graphics
library(survminer)
Load the lungs dataset into current environment
data(lung)
Read the dataset description
?lung
Build an empty model
We are interested in death cases only (status = 2)
This model has no predictor variable
mySurvFit1 <- survfit(Surv(time, status==2) ~ 1,

data = lung)
Plot the fited curve
ggsurvplot(mySurvFit1)
Use patient's sex as predictor
mySurvFit2 <- survfit(Surv(time, status==2) ~ sex,

data = lung)
Plot the curve with confidence interval and p-value
ggsurvplot(mySurvFit2,

conf.int = TRUE,
pval = TRUE)

The predictor needs to be categorical variable
Use age as predictor by encoding into age group categories
mySurvFit3 <- survfit(Surv(time, status==2) ~ cut(age, c(40,50,60,70)),

data = lung)
ggsurvplot(mySurvFit3,pval = TRUE)

8.2. COX PROPORTIONAL HAZARDS MODEL 77

+++++++++++++++++
++ ++

+ + ++

++
++++++++++++++++++++

+++++
+++++ +

+ + +
p = 0.0013

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + +sex=Male sex=Female

138 62 20 7 2
90 53 21 3 0sex=Female

sex=Male

0 250 500 750 1000
Time

S
tr

at
a

Number at risk

Figure 8.1: Kaplan-Meier curves showing two strata

8.2 Cox Proportional Hazards Model

To investigate the statistical effects of multiple predictor variables on survival
probability, a technique named Cox regression can be used. Cox regression can take
into account categorical, ordinal as well as numerical range variables. It analyses
the effects of multiple variables on survival and assumes that the effects of these
covariates are time-independent.

The Hazard function ht is given by equation (8.2). The term h0,t in the equa-
tion represents the baseline Hazard when all covariates are zero. The linear terms
x1, x2, x3, ..., xM are the predictor variables, while β1, β2, β3, ..., βM are their cor-
responding coefficients. For each coefficient βm, the exponential term eβm repre-
sents the Hazard ratio of the covariate variable xm. If eβm > 1, the corresponding
covariate is positively correlated with an increase in hazard. On the other hand, xm
is negatively correlated with Hazard if eβm < 1. In the case where eβm = 1, the
variable xm has no effects on Hazard.

ht = h0,t × eβ1x1+β2x2+β3x3+...+βMxM (8.2)

The Cox model assumes that variable effects are time-independent. To test
whether the assumptions holds, we can analyse the Schoenfeld residuals for each
covariate variable. Equation (8.3) defines the Schoenfeld residual si,k of covariate k

78 CHAPTER 8. SURVIVAL ANALYSIS

of observation i. It is the difference between covariate xi,k and the sum of weighted
likelihood of failure of all subjects at risk at time t. If there are observable temporal
patterns in the residual plot, it suggests that the proportional Hazard assumption
may have been violated. In this case, you can consider adding interaction effects
with time to mitigate the problem.

si,k = xi,k −
j∈R(t)∑
i=1

xi,mp̂j (8.3)

Exercise 29 Training a Cox Regression Model

Cox regression model can be trained using the coxph() function in the
survival package. Example 8.2.1 builds a Cox regression model and analy-
ses the effects of different covariate variables on the time-to-death of a group of
cancer patients.

8.2. COX PROPORTIONAL HAZARDS MODEL 79

R Example 8.2.1

Build a Cox model with predictor variables
myCoxModel1 <- coxph(Surv(time, status==2) ~ factor(sex) + age +

ph.ecog + ph.karno +
pat.karno +
meal.cal + wt.loss, data = lung)

Read the model summary
summary(myCoxModel1)

Call:
coxph(formula = Surv(time, status == 2) ~ factor(sex) + age +
ph.ecog + ph.karno + pat.karno + meal.cal + wt.loss, data = lung)
##
n= 168, number of events= 121
(60 observations deleted due to missingness)
##
coef exp(coef) se(coef) z Pr(>|z|)
factor(sex)2 -5.509e-01 5.765e-01 2.008e-01 -2.743 0.00609 **
age 1.065e-02 1.011e+00 1.161e-02 0.917 0.35906
ph.ecog 7.342e-01 2.084e+00 2.233e-01 3.288 0.00101 **
ph.karno 2.246e-02 1.023e+00 1.124e-02 1.998 0.04574 *
pat.karno -1.242e-02 9.877e-01 8.054e-03 -1.542 0.12316
meal.cal 3.329e-05 1.000e+00 2.595e-04 0.128 0.89791
wt.loss -1.433e-02 9.858e-01 7.771e-03 -1.844 0.06518 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
exp(coef) exp(-coef) lower .95 upper .95
factor(sex)2 0.5765 1.7347 0.3889 0.8545
age 1.0107 0.9894 0.9880 1.0340
ph.ecog 2.0838 0.4799 1.3452 3.2277
ph.karno 1.0227 0.9778 1.0004 1.0455
pat.karno 0.9877 1.0125 0.9722 1.0034
meal.cal 1.0000 1.0000 0.9995 1.0005
wt.loss 0.9858 1.0144 0.9709 1.0009
##
Concordance= 0.651 (se = 0.029)
Likelihood ratio test= 28.33 on 7 df, p=2e-04
Wald test = 27.58 on 7 df, p=3e-04
Score (logrank) test = 28.41 on 7 df, p=2e-04

The model output above shows the statistical effects of different covariates. For
instance, sex1 is a statistically significant variable for predicting time-to-death of
lung cancer patients. This variable has coefficient βsex=2 = −0.551, which means
that having sex=2 would change the patient’s hazard by e−0.551 − 1 = −42.4%.
In other words, sex=2 is beneficial to the patient’s wellbeing.

Likewise, ph.ecog is also a significant variable. Each unit increase in
ph.ecog would change the patient’s Hazard by e0.734 − 1 = 108.4%. This
implies that a higher ph.ecog score significantly increases a patient’s risk of

1It is encoded as male=1 and female=2.

80 CHAPTER 8. SURVIVAL ANALYSIS

death.

Exercise 30 Cox Regression Diagnostics

Example 8.2.2 tests the Cox proportional hazards assumption by calculating the
Schoenfeld residuals. If there are observable patterns along the temporal dimension,
the models’ assumption may have been violated.

R Example 8.2.2

Test the proportional Hazard assumption of a Cox regression
myCoxZph1 <- cox.zph(myCoxModel1)
Print the results of the test
myCoxZph1
Plot the Schoenfeld residuals
ggcoxzph(myCoxZph1)

−0.2

0.0

0.2

54 150 200 280 340 430 560 710
Time

B
et

a(
t)

 fo
r

ag
e Schoenfeld Individual Test p: 0.2576

−4

0

4

54 150 200 280 340 430 560 710
TimeB

et
a(

t)
 fo

r
ph

.e
co

g Schoenfeld Individual Test p: 0.7204

−0.2
−0.1

0.0
0.1
0.2

54 150 200 280 340 430 560 710
TimeB

et
a(

t)
 fo

r
ph

.k
ar

no Schoenfeld Individual Test p: 0.0713

Global Schoenfeld Test p: 0.06356

Figure 8.2: Scaled Schoenfeld residuals of a selected set of variables plotted against
time

Chapter 9

Unsupervised Learning

Unsupervised learning identifies the underlying structure of an unlabelled dataset.
Clustering is one of the most common applications of unsupervised learning, which
aims at allocating similar objects into common groups.

In a given set of unlabelled objects, there can be different ways to produce
clusters. Figure 9.1 below shows the effects of choosing different number of
clusters.

XX

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Variable 1

Va
ria

bl
e

2

X
X

X
X

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Variable 1

Va
ria

bl
e

2

X
X

X

X
X

X

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Variable 1

Va
ria

bl
e

2

X

X

X

X

X XX

X

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Variable 1

Va
ria

bl
e

2

Figure 9.1: Different ways to cluster a set of unlabelled objects

81

82 CHAPTER 9. UNSUPERVISED LEARNING

9.1 K-means Clustering

K-means clustering is a very common clustering algorithm due to its intrinsic
simplicity. It produces clusters by minimising the Euclidean distance between
objects and the centroid of their own cluster. The Euclidean distance between two
P -dimensional vectors ~xj and ~xk is defined as in equation (9.1).

d(~xj , ~xk) =

√√√√ P∑
p=1

(xj,p − xk,p)2 (9.1)

Algorithm 1: K-means clustering
Input :Set of unlabelled object X = {~x1, ~x2, ~x3, ..., ~xN}
Input :Number of clusters K

1 Initialise
2 {~µ1, ~µ2, ~µ3, ..., ~µK} ← Randomise({~x1, ~x2, ~x3, ..., ~xN},K),K < N ;
3 while true do
4 for k ← {1, 2, 3, ...,K} do
5 ωk ← {} ;
6 end
7 for n← {1, 2, 3, ..., N} do
8 k ← argmin

k′
d(~µk′ , ~xn), k ∈ 1, 2, 3, ...,K ;

9 ωk ← ωk ∪ {~xn} ;
10 end
11 for k ← {1, 2, 3, ...,K} do
12 ~µ

′
k ←

1
|ωk|

∑
~x∈ωk

~x ;
13 end
14 if ~µ′

k = ~µk, k = 1, 2, 3, ...K then
15 break;
16 else
17 ~µk = ~µ

′
k ;

18 end
19 end
20 return Cluster centroids {~µ1, ~µ2, ~µ3, ..., ~µK} ;
21 return Object cluster assignment {ω1, ω2, ω3, ..., ωK}

The algorithm starts with a randomly select subset of K objects as initial cluster
centroids such as {~µ1, ~µ2, ~µ3, ..., ~µK}. The Euclidean distance between initial
centroids and each object in the unlabelled set is calculated. The cluster assignment
of an object belongs to the centroid with shortest distance. Once cluster assignment
is completed for all objects, the centroid is recomputed as the mean of the cluster.

9.1. K-MEANS CLUSTERING 83

This process iterates until the new cluster assignment is identical to the one at the
previous iteration.

Since the dataset is unlabelled, the true number of clusters is unknown. The K
value which represents the number of clusters is usually experimented one-by-one
and the best value is determined from the output.

In the R language, the K-means clustering algorithm is implemented very
efficiently. You can use the kmeans() function in the stats package to perform
K-means clustering.

Exercise 31 Dimensionality Reduction

In example 9.1.1, we will use the mtcars dataset. This dataset contains six
numeric variables. In other words, car can be represented as P = 6 dimensional
objects. In practical applications of the K-means algorithm, it is very common to
normalise the numeric variables using z-scores if they are recorded in different units.
Normalisation ensures that all variables are fairly represented.

You can use dimensionality reduction techniques such as principal component
analysis (PCA) to visualise the data. PCA converts input variables into principal
components (PCs) in the order of maximum variance. The following code will
execute PCA and visualise the top two PCs on a scatterplot.

R Example 9.1.1

Select the numeric variables from the mtcars dataset
mtcars_numeric <- mtcars %>% select(mpg, disp, hp, drat, wt, qsec)
Calculate the mean and standard deviation for each variables
mtcars_mean <- mtcars_numeric %>% lapply(mean)
mtcars_sd <- mtcars_numeric %>% lapply(sd)
Convert the numeric variables into z-scores using the mean and sd
mtcars_numeric_normalised <- (mtcars_numeric - mtcars_mean) / mtcars_sd
There are six variables in this dataset
We can use principal component analysis (PCA) to reduce the dimensionity
myPca <- prcomp(mtcars_numeric_normalised)
library(ggfortify)
autoplot(myPca, loadings.label = TRUE)

84 CHAPTER 9. UNSUPERVISED LEARNING

mpg
disp

hp
drat

wt

qsec

−0.2

0.0

0.2

0.4

−0.2 0.0 0.2
PC1 (69.79%)

P
C

2
(1

9.
14

%
)

Figure 9.2: Biplot showing the first and second principal components

Exercise 32 K-means Clustering

With a P = 6 dimensional dataset, we can apply theK-means algorithm on it to
compute the clusters. Since the number of clusters K is unknown, we experiement
with different values in example 9.1.2. The clustering results can be visualised in a
low-dimensional space with two principal components.

R Example 9.1.2

We know there are three types of of flowers, so let's start with K=3
You can try different values
myKClust <- kmeans(mtcars_numeric_normalised, centers = 3)
Visualise the clusters
ggplot(myPca$x, aes(x = PC1,

y = PC2,
colour = factor(myKClust$cluster))) +

geom_point() +
geom_label(aes(label=mtcars %>% rownames())) +
stat_ellipse() +
labs(colour="Cluster")

9.2. HIERARCHICAL CLUSTERING 85

Mazda RX4
Mazda RX4 Wag

Datsun 710

Hornet 4 Drive

Hornet Sportabout

Valiant

Duster 360

Merc 240D

Merc 230

Merc 280
Merc 280C Merc 450SEMerc 450SL

Merc 450SLC

Cadillac FleetwoodLincoln Continental

Chrysler Imperial
Fiat 128

Honda Civic

Toyota Corolla

Toyota Corona

Dodge Challenger
AMC Javelin

Camaro Z28

Pontiac Firebird
Fiat X1−9

Porsche 914−2
Lotus Europa

Ford Pantera L

Ferrari Dino

Maserati Bora

Volvo 142E

−2

−1

0

1

2

−4 −2 0 2 4
PC1

P
C

2

Cluster a a1 2

Mazda RX4
Mazda RX4 Wag

Datsun 710

Hornet 4 Drive

Hornet Sportabout

Valiant

Duster 360

Merc 240D

Merc 230

Merc 280
Merc 280C Merc 450SEMerc 450SL

Merc 450SLC

Cadillac FleetwoodLincoln Continental

Chrysler Imperial
Fiat 128

Honda Civic

Toyota Corolla

Toyota Corona

Dodge Challenger
AMC Javelin

Camaro Z28

Pontiac Firebird
Fiat X1−9

Porsche 914−2
Lotus Europa

Ford Pantera L

Ferrari Dino

Maserati Bora

Volvo 142E

−3

−2

−1

0

1

2

−5.0 −2.5 0.0 2.5
PC1

P
C

2

Cluster a a a1 2 3

Mazda RX4
Mazda RX4 Wag

Datsun 710

Hornet 4 Drive

Hornet Sportabout

Valiant

Duster 360

Merc 240D

Merc 230

Merc 280
Merc 280C Merc 450SEMerc 450SL

Merc 450SLC

Cadillac FleetwoodLincoln Continental

Chrysler Imperial
Fiat 128

Honda Civic

Toyota Corolla

Toyota Corona
Dodge Challenger
AMC Javelin

Camaro Z28

Pontiac Firebird
Fiat X1−9

Porsche 914−2
Lotus Europa

Ford Pantera L

Ferrari Dino

Maserati Bora

Volvo 142E

−3

−2

−1

0

1

2

−5.0 −2.5 0.0 2.5
PC1

P
C

2

Cluster a a a a1 2 3 4

Figure 9.3: Comparing K-means clustering results using different K values

9.2 Hierarchical Clustering

In a given unlabelled dataset containing objects ~xi, i = {1, 2, 3, ..., N}, the maxi-
mum number of cluster is N , where each cluster contains only 1 member object.
In this case, the cluster centroids denoted as ~µi contain rich information which
perfectly describes their member objects as ~µi = ~xi. However, such information
would be practically useless. To improve this, we can start with N clusters and
merge the closest two clusters into one. This would have obtained N − 1 clusters
by adding the least amount of error into the system. This merging process can be
iteratively repeated until there are no more clusters left to merge. This is how the
agglomerative hierarchical clustering algorithm works.

In hierarchical clustering, the closeness metric between two clusters ωi and ωj
is denoted as a function D(ωi, ωj). There are several common choices including
1) single linkage, 2) complete linkage, 3) average linkage, 4) centroid and 5) Ward’s
method . For single linkage, the distance between two clusters is defined as the
closest distance between their member objects (9.2a). In many cases, this tends to
produce long chains with similar objects merging sequentially into the same cluster.
On the other hand, complete linkage uses the distance between farthest objects
between two clusters as the cluster closeness metric (9.2b). This tends to produce
clusters with consistent size. The two aforementioned measurements are prone to
outlier influence. To mitigate this problem, average linkage can be used. It uses the
arithmetic average of all pairwise distances as the cluster closeness measurement
(9.2c). Similarly, we can make use of the cluster centroid to measure closeness
(9.2d). The centroid method is also resilient to outlier influence. Ward’s method
compares the change in the sum of squares between cluster members and their

86 CHAPTER 9. UNSUPERVISED LEARNING

centroid when they are merged (9.2e).

Single linkage

D(ωi, ωj) = min
~xi∈ωi,~xj∈ωj

d(~xi, ~xj) (9.2a)

Complete linkage

D(ωi, ωj) = max
~xi∈ωi,~xj∈ωj

d(~xi, ~xj) (9.2b)

Average linkage

D(ωi, ωj) = 1
|ωi|

1
|ωj |

∑
~xi∈ωi

∑
~xj∈ωj

d(~xi, ~xj)

︸ ︷︷ ︸
Average pairwise distance between ωi and ωj

(9.2c)

Centroid

D(ωi, ωj) = d

((1
|ωi|

∑
~xi∈ωi

~xi︸ ︷︷ ︸
Centroid of ωi

)
,
(1
|ωj |

∑
~xj∈ωj

~xj

︸ ︷︷ ︸
Centroid of ωj

))
(9.2d)

Ward’s method

D(ωi, ωj) =
∑

k∈ωi∪ωj

(
~xk − (1

|ωi ∪ ωj |
∑

~x
k

′∈ωi∪ωj

~xk′)
)2

︸ ︷︷ ︸
Sum of squares of ωi ∪ ωj

−

∑
i∈ωi

(
~xi − (1

|ωi|
∑
~x

i
′∈ωi

~xi′)
)2

︸ ︷︷ ︸
Sum of squares of ωi

−

∑
j∈ωj

(
~xj − (1

|ωj |
∑

~x
j

′∈ωj

~xj′)
)2

︸ ︷︷ ︸
Sum of squares of ωj

(9.2e)

9.2. HIERARCHICAL CLUSTERING 87

Algorithm 2: Agglomerative hierarchical clustering
Input :Set of unlabelled object X = {~x1, ~x2, ~x3, ..., ~xN}
Input :Linkage function D(ωi, ωj)

1 for n ∈ {1, 2, 3, ..., N} do
2 ωn ← {~xn} ;
3 end
4 Ω← {ω1, ω2, ω3, ..., ωN} ;
5 while |Ω| > 1 do
6 Ω′ = {} ;
7 for i ∈ {1, 2, 3, ..., |Ω|} do
8 Ω′

i ← D(ωi, ωj), j = {1, 2, 3, ..., |Ω|} ;
9 end

10 {i, j} ← argmin
i,j

Ω′
;

11 ωij ← Ω′
i ∪ Ω′

j ;
12 Ω← Ω′ \ Ω′

i \ Ω′
j ∪ ωij ;

13 end

The result of hierarchical clustering can be visualised using a tree-like structure
called dendrogram. The merging sequence of clusters as well as object closeness
can be easily read from the dendrogram. The height of the node at the dendrogram
indicates the closeness metric of the two clusters when they are merged. After
analysing the dendrogram, users can decide how many clusters to retain. This is
usually an subjective decision. Once decided, the dendrogram can be cut to obtain
the desired number of clusters. Alternatively, we can cut the dendrogram at a certain
fixed height to discard trivial clusters at the bottom.

88 CHAPTER 9. UNSUPERVISED LEARNING

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

Iteration 8

Iteration 9

Iteration 10

Iteration 11

Iteration 12

Iteration 13

Iteration 14

Iteration 15

Iteration 16

Iteration 17

Iteration 18

Iteration 19

Iteration 20

Iteration 21

Iteration 22

Iteration 23

Iteration 24

Iteration 25

Iteration 26

Iteration 27

Iteration 28

Iteration 29

Iteration 30

Iteration 31

Iteration 32

Figure 9.4: Iterative steps of agglomerative hierarchical clustering

9.2. HIERARCHICAL CLUSTERING 89

Exercise 33 Constructing a Dendrogram

In the R language, hierarchical clustering can be performed using the hclust()
function which is included in the default stats package. The function requires
a distance matrix of objects which is normally pre-computed using the dist()
function. The hclust() function uses complete linkage by default if the method
parameter is not specified. You can change the linkage function and check the dif-
ference in output results. The code snippet in example 9.2.1 performs hierarchical
clustering and visualises the result as a simple dendrogram.

R Example 9.2.1

Calculate distance matrix
Using Euclidean distance here but you can change it
myDist <- mtcars_numeric_normalised %>% dist(method = "euclidean")
Perform hierarchical clustering using complete linkage
myHClust <- myDist %>% hclust(method = "complete")
You can change the closeness measurement
Read the documentation of the hclust function
?hclust
Visualise the dendrogram
plot(myHClust)
You can use ggdendrogram to plot a prettier dendrogram
library(ggdendro)
ggdendrogram(myHClust)

0
2

4
6

F
or

d
P

an
te

ra
 L

M
as

er
at

i B
or

a

D
us

te
r

36
0

C
am

ar
o

Z
28

C
hr

ys
le

r
Im

pe
ria

l

C
ad

ill
ac

 F
le

et
w

oo
d

Li
nc

ol
n

C
on

tin
en

ta
l

H
or

ne
t S

po
rt

ab
ou

t

P
on

tia
c

F
ire

bi
rd

M
er

c
45

0S
LC

M
er

c
45

0S
E

M
er

c
45

0S
L

D
od

ge
 C

ha
lle

ng
er

A
M

C
 J

av
el

in

M
er

c
23

0

H
or

ne
t 4

 D
riv

e

V
al

ia
nt

M
er

c
28

0

M
er

c
28

0C

M
er

c
24

0D

To
yo

ta
 C

or
on

a

F
er

ra
ri

D
in

o

M
az

da
 R

X
4

M
az

da
 R

X
4

W
ag

D
at

su
n

71
0

V
ol

vo
 1

42
E

P
or

sc
he

 9
14

−
2

Lo
tu

s
E

ur
op

a

H
on

da
 C

iv
ic

F
ia

t X
1−

9

F
ia

t 1
28

To
yo

ta
 C

or
ol

la

Figure 9.5: Dendrogram illustrating hierarchical clustering using complete linkage

Exercise 34 Cutting a Dendrogram

The dendrogram can be cut to remove smaller clusters at lower heights. This can
be achieved using the cutree() function in R. You can either specify the number

90 CHAPTER 9. UNSUPERVISED LEARNING

of clusters to retain using the parameter k, this will retain the top k clusters of the
dendrogram. Alternatively, you can use the h parameter to specify at which height
the dendrogram should be cut. Example 9.2.2 shows how to cut a dendrogram. It
also demonstrates various ways to visualise a dendrogram.

R Example 9.2.2

Cut the dendrogram by specifying how many clusters to retain
You can change the number of clusters here
myCutClusters1 <- cutree(myHClust, k = 5) %>% factor()
Alternatively, cut the dendrogram at a certain height
myCutClusters2 <- cutree(myHClust, h = 6) %>% factor()
Use the ape package to plot pretty dendrograms
The RColorBrewer package generates colour palette
library(ape)
library(RColorBrewer)
Obtain colour definition
myColours <- brewer.pal(n = 5, name="Set1")
Convert the hierarchical cluster result into a phylogram object
myPhylo <- myHClust %>% as.phylo()
Draw some plots
This is a phylogenic tree
plot(myPhylo,

type = "phylogram",
tip.color = myColours[myCutClusters1])

This is a cladogram
plot(myPhylo,

type = "cladogram",
tip.color = myColours[myCutClusters1])

This is a unrooted phylogenic tree
plot(myPhylo,

type = "unrooted",
tip.color = myColours[myCutClusters1])

This is a fan phylogram
plot(myPhylo,

type = "fan",
tip.color = myColours[myCutClusters1])

This is a radial phylogram
plot(myPhylo,

type = "radial",
tip.color = myColours[myCutClusters1])

9.2. HIERARCHICAL CLUSTERING 91

M
az

da
 R

X
4

M
az

da
 R

X
4

W
ag

D
at

su
n

71
0

Hornet 4 Drive

H
or

ne
t S

po
rt

ab
ou

t

Valiant

Duster 360

Merc
240D

Merc 230

Merc 280

Merc 280C

M
erc 450S

E

M
erc 450SL

M
erc 450S

LC
C

ad
illa

c
Fl

ee
tw

oo
d

Li
nc

ol
n

C
on

tin
en

ta
l

Chr
ys

ler
 Im

pe
ria

l

Fiat 128

Honda Civic

Toyota Corolla

To
yo

ta
 C

or
on

a

Dodge Challenger
AMC Javelin Camaro Z28

P
on

tia
c

F
ire

bi
rd

Fiat X1−9

Porsche 914−2
Lotus Europa

Ford Pantera L

Fe
rra

ri
D

in
o

Maserati Bora

Volvo 142E

Figure 9.6: Fan phylogram showing hierarchical clusters

92 CHAPTER 9. UNSUPERVISED LEARNING

Chapter 10

Extending R

There are many ways to extend R functionalities. We will introduce some of them
in this chapter.

10.1 R Markdown

R Markdown is a way to produce documents dynamically. It supports various output
formats such as HTML, PDF, LaTeX and Beamer. The document is self-contained
and fully reproducible which makes it easy to share.

RStudio is integrated with R Markdown so that users can manipulate the docu-
ments very easily. Users can launch a R Markdown template by navigating to File >
New File > R Markdown. This creates a .Rmd template. It contains three types
of content:

YAML header Surrounded by --- at the top of the document. Users can specify
key parameters here, such as output format.

Text Standard Markdown format.

Code chunk Surrounded by ```, optional arguments can be provided in the trail-
ing curly bracket {}.

A standard YAML header can render basic properties such as document title
and author names in the HTML output file. Additional properties can be supplied to
modify style and enable advanced features.

93

94 CHAPTER 10. EXTENDING R

The text body is written in standard markdown format. Markdown is a lightweight
markup language with plain text formatting syntax. Small pieces of inline R code is
surrounded by the `r mark. This will print the R output in the compiled output.

A large chunk of multi-line R code is embraced by the ```{r} symbol. Addi-
tional arguments can be passed to each code chunk. For example, message=FALSE
would supress package loading message. On the other hand, echo=FALSE would
hide the R code while still executing the chunk.

Exercise 35 Dynamically Generating a Report

This example shows how to dynamically generate an HTML document using R
Markdown. In RStudio, user can compile a .Rmd file by clicking the Knit button
or pressing Ctrl + Shift + K. This will send the document to the knitr
engine for compilation. The compiled output is shown in Figure 35.

title: "Car Assessment Report"
author: "James Bond"
output: html_document

Vehicle Analysis
=======

I have analysed `r nrow(mtcars)` cars systematically. The
following vehicles have the largest `horsepower`:

```{r, message=FALSE}
library(dplyr)
mtcars %>%

mutate(name = rownames(.)) %>%
arrange(desc(hp)) %>%
select(name, hp) %>%
head(2)

```

The following graph shows that these cars have impressive

horsepower and **1/4 mile time**.

```{r, echo=FALSE, warning=FALSE, message=FALSE}
# Create a ggplot
library(ggplot2)
myPlot <- mtcars %>%

mutate(car_name = rownames(.),



10.1. R MARKDOWN 95

hp_rank = dense_rank(desc(hp)),
top2 = hp_rank <= 2) %>%

ggplot(aes(x=qsec, y=hp), name=car_name) +
stat_smooth(method = "lm") +
geom_point(aes(colour=top2)) +
labs(x="1/4 Mile Time (Seconds)",

y="Horsepower",
colour="Top 2 Horsepower")

# Convert ggplot to plotly
library(plotly)
myPlot %>% ggplotly(tooltip = "name")
```

Selection Criteria

Essential gadgets are required for Health and Safety reasons:

* Rocket launchers (_front_ and _back_)

* Ejectable seats

* Bulletproof screen

96 CHAPTER 10. EXTENDING R

Figure 10.1: Compiled R Markdown output in HTML format

10.2. SHINY WEB APPLICATION 97

10.1.1 R Notebook

R Notebook is a special type of an R Markdown document with chunks that can be
executed independently and interactively, with output visible immediately beneath
the input.

Users can launch an R Notebook template by navigating to File > New File >
R Notebook. It has the same .Rmd file extension and the Notebook is configured
by the output: html_notebook parameter in the YAML header.

The Preview button shows the rendered copy of the Notebook. Unlike Knit
for standard R Markdown documents, Preview does not run any R code chunks.
Instead, the output of the chunk when it was last run in the editor is displayed.

10.2 Shiny Web Application

shiny is a package for creating interactive web applications. Users can use it to
integrate statistical models in R with dashboard elements such as chart, drop down
menu, checkbox, etc. It is a commonly used to disseminate analytical output to
non-technical users.

In a shiny application, the web page layout is coded in R and automatically
rendered. There is no need to write any HTML, CSS or JavaScript anymore. This
enables users to focus more on analytical elements and develop dashboards rapidly.

User can launch a template for a shiny web application in RStudio by navigat-
ing to File > New Project > Shiny Web App. This creates a new project containing
an app.R file12. There are two main components inside the file:

ui This defines the user interface (UI) for the shiny application, e.g. the page
layout, location of control widgets, page title, etc.

server The server-side application which contains the logic. The analytical code is
located in this part.

The ui of the default shiny template is shown in example 10.2.1. The
page layout is defined by the fluidPage() function. In this example, the

1Do not change the file name, otherwise the system would not recognise it as a shiny web
application.

2Users can also create two files ui.R and server.R seperately. This is suitable for more complex
application with longer code.

98 CHAPTER 10. EXTENDING R

titlePanel() function defines the page title which is located at the top. The
sidebarLayout() function divides the screen layout into two unequal parts.
The smaller part is defined by sidebarPanel() which contains input controls.
On the other hand, the larger part is defined by mainPanel() which contains the
output.

Many types of control widgets are supported in shiny. They are shown in
figure 10.2. A detailed description can be found at https://shiny.rstudio.
com/tutorial/written-tutorial/lesson3/.

R Example 10.2.1

Define UI for application that draws a histogram
ui <- fluidPage(

Application title
titlePanel("Old Faithful Geyser Data"),
Sidebar with a slider input for number of bins
sidebarLayout(

sidebarPanel(
sliderInput("bins",

"Number of bins:",
min = 1,
max = 50,
value = 30)),

Show a plot of the generated distribution
mainPanel(

plotOutput("distPlot")
)

)
)

https://shiny.rstudio.com/tutorial/written-tutorial/lesson3/
https://shiny.rstudio.com/tutorial/written-tutorial/lesson3/

10.2. SHINY WEB APPLICATION 99

Figure 10.2: Control widgets in shiny

Example 10.2.2 shows the server component in the default shiny template.
It is defined as a simple function which accepts two arguments input and output.
In the function, named elements can be added to the output and visualised through
the ui. In this case, the function retrieves variable input$bins and renders a
histogram, which is eventually returned as a graph as the output$distPlot
element.

R Example 10.2.2

Define server logic required to draw a histogram
server <- function(input, output) {

output$distPlot <- renderPlot({
generate bins based on input$bins from ui.R
x <- faithful[, 2]
bins <- seq(min(x), max(x), length.out = input$bins + 1)
draw the histogram with the specified number of bins
hist(x, breaks = bins, col = 'darkgray', border = 'white')

})
}

To run a shiny application, users can click on the Run App button in RStudio.
This will render the application. Figure 10.2 shows the shiny application rendered
from the default template.

100 CHAPTER 10. EXTENDING R

Figure 10.3: Default shiny template

Exercise 36 Design an Analytics Dashboard

In this exercise, the objective is to design a simple analytics dashboard which
displays predicted flight departure delay. Users can use shiny to make predictions in
real-time. The app includes serveral basic widgets such as date picker, drop-down
menu and radio button. A sample screenshot is displayed in figure 36

Figure 10.4: Interactive application displaying predicted flight departure delay.

10.2. SHINY WEB APPLICATION 101

Please load the package nycflights13 and use the flights dataset. Steps
are indicated in example 10.2.3.

R Example 10.2.3

Load the package
library(nycflights13)
Browse the flights dataset
Aii flights departing from New York airports in 2013.
flights
Browse the airlines dataset
This is a small reference table containing full names of airlines
airlines

To begin with, users can launch the default shiny template and start editing.
The code chunk in example 10.2.4 shows how the underlying model works. This
is the main logic of the application and therefore should be placed in the server
component of the application.

R Example 10.2.4

library(dplyr)
library(lubridate)
library(ggplot2)
Build a simple model to predict flight departure delay
myFlightModel <- rpart(dep_delay ~

months(date) + weekdays(date) +
hour + origin + dest + carrier,

data = flights %>% mutate(date = make_date(year, month, day)),
na.action = na.omit,
control = rpart.control(cp = 0.0005))

Predict the departure delay of a new flight
Use shiny control widgets to capture user input
myNewFlight <- tibble(date = make_date(2019,5,10),

hour= 0:23,
origin="JFK",
dest = "SFO",
carrier="AA")

Run the prediction
myNewFlightDelay <- predict(myFlightModel, myNewFlight)
Visualise the prediction
tibble(hour=0:23, dep_delay = myNewFlightDelay) %>%

ggplot(aes(x=hour, y=dep_delay)) +
geom_col() +
labs(x="Hours", y="Departure Delay (Minutes)")

102 CHAPTER 10. EXTENDING R

10.3 Writing Packages

In R, functions are wrapped in packages so that they can be re-used and transported.
All functions are documented in a standard way and usually include working
examples.

Exercise 37 Create a Package

The objective of this exercise is to create a simple R package. To launch a
package template, navigate to File > New Project > New Directory > R Package.
Enter a package name such as mypackage then click Create Project as shown in
figure 37. This should launch a package template.

Figure 10.5: Launching an empty package template.

All functions in a package should be documented in a standard way. This can
be done through the roxygen2 package. To make sure roxygen2 is enabled,
navigate to Build > Configure Build Tools and check the box Generate documen-
tation with Roxygen. Afterwards, click on Configure and check all boxes, this
will ensure documentation is generated at all places. This is illustrated in figure 37.

10.3. WRITING PACKAGES 103

Figure 10.6: Enabling roxygen2 to generate documentation

Functions are located in the R directory. We will create a simple function called
is_even() to check whether a given integer is even or not. Users can begin by
nagivating to this directory and create a new file named is_even.R and enter the
code chunk in example 10.3.1.

104 CHAPTER 10. EXTENDING R

R Example 10.3.1

#' Checks even number
#'
#' \code{is_even()} returns \code{TRUE} if the input is an even number.
#'
#' @author James Bond \email{jbond@@universialexports.com}
#'
#' @param x Input integer vector.
#' @return Logical vector
#'
#' @examples
#' myNumbers <- 1:20
#' is_even(myNumbers)
#'
#' @export
is_even <- function(x) {

if(!is.integer(x)){
stop("Input is not integer")

}
return (x %% 2) == 0

}

The roxygen2 package picks up tags such as @param and turns them into
standard R documentation. It is particularly important to include @export at the
end, as this will ensure the function is exported so that users can access it.

Before moving on, users can open up the DESCRIPTION file and modify the
package details. It is crucial that the details are up-to-date after every code change,
especially the version number.

Package: mypackage
Type: Package
Title: What the Package Does (Title Case)
Version: 0.1.0
Author: Who wrote it
Maintainer: The package maintainer <yourself@somewhere.net>
Description: More about what it does (maybe more than one line)

Use four spaces when indenting paragraphs within the Description.
License: What license is it under?
Encoding: UTF-8
LazyData: true
RoxygenNote: 6.0.1

Once the user has finished editing everything, the source code is ready to be
wrapped as a package. To do this, the user can navigate to Build > Check Package.
This will check the source code and ensure the code is ready for build. Afterwards,

10.4. REPRODUCIBILITY 105

the user can click on Build > Build Source Package, which will wrap all the code
into a .tar.gz package file. The resulting file is a standard R package which can
be transported to any user on any platform.

Another way to wrap the package is to click on Build > Install and Restart.
This builds the package and installs it directly into the user’s library. In this case,
the user can simply call the library and start using the custom functions rigth away.

R Example 10.3.2

library(mypackage)
This will return a logical vector
is_even(1:20)
This will error
is_even(3.141)
Lookup the documentation
?is_even

10.4 Reproducibility

The principle of reproducibility suggests that a process should always produce same
results if the input remains identical. Reproducible results are crucially important
for business analytics for various kind of reasons, such as compliance, quality
assurance, KPI measurement... etc. The open source nature of R and many of its
packages means they get very frequent updates. There can be substantial differences
between versions of the same package.

A dependency management system called packrat can be used to ensure
reproducibility. It creates a private library for the project and searches for packages
only in this location. Shared libraries would not be used in a packrat-enabled
project. This means the project is totally isolated and updating packages in a shared
library would not break the project.

Users can enable packrat by navigating to Tools > Project Options > Pack-
ages and enable the option Use packrat with this project. The system will then
scan for packages and put them in a private library.

106 CHAPTER 10. EXTENDING R

Figure 10.7: Enabling packrat dependency management system

Chapter 11

Efficient Programming

Computational power is a scarce resource, especially when most base R functions
run in memory. This chapter dives deeper into memory and CPU management.

11.1 Memory Usage

All integer and numeric values in R are stored as double-precision values. This
means each number consumes 64 bits of system memory. Users should notice that
significant figures have no effect on the object size. In other words, the values 3.14
and 3.14159265359 have identical object size.

The package pryr can be used to track memory usage, as shown in example
11.1.1.

R Example 11.1.1

library(pryr)
Displays the size of an integer value
Note the trailing 'L' character, this forces the number to become an integer
object_size(3L)
Significant figure of a numeric valule has no effect on object size
Therefore these two values have the same object size
object_size(3.14)
object_size(3.14159265359)
Creates an integer vector
This contains 1 million integers
Consumes 4 MB memory
myBigVec1 <- 1:1e6
object_size(myBigVec1)

107

108 CHAPTER 11. EFFICIENT PROGRAMMING

In general, object size grows proportionally with the length of the object. How-
ever, memory is allocated to R objects in large blocks in exchange for faster pro-
cessing. Example 11.1.2 shows two character objects with different length having
the same object size.

R Example 11.1.2

Both character objects have identical object size.
Each consume 120 bytes.
object_size("My name is Bond.")
object_size("My name is Bond, James Bond.")

It is important to use data type correctly in order to conserve memory. Example
11.1.3 compares the object size of a character vector versus a logical vector.

R Example 11.1.3

Object size of logical value is much smaller than character value
In this case, the character vector is three time larger
object_size(c("Yes", "No", "No", "Yes"))
object_size(c(TRUE, FALSE, FALSE, TRUE))

The mem_used() function in the pryr package identifies the total memory
used by all objects. This does not include memory used by the R interpreter itself,
the bash shell wrapping R, nor memory used by RStudio IDE. Example 11.1.4
shows how the function is used.

R Example 11.1.4

Returns the total memory used by all R objects
mem_used()

Useful function such as mem_change() can be used to measure how much
memory was changed from an operation. This is shown in example 11.1.5.

R Example 11.1.5

Assign a large vector
This will consume memory (+4 MB)
mem_change({ myBigVec2 <- 1:1e6 })
Remove a large vector
This releases memory (-4 MB)
mem_change({ rm(myBigVec2) })

11.2. PROFILING 109

11.2 Profiling

R code can be profiled to identify the memory and execution time bottleneck. The
package profvis works with RStudio IDE to offer an interactive interface for
visualising profile data.

The profvis() function wraps an R operation inside a set of curly brackets
{}, as shown in example 11.2.1. This example generates some random numbers,
runs a simple linear regression model and views the model summary.

R Example 11.2.1

library(profvis)
profvis({
Generate some random numbers from normal distribution
myDataX <- rnorm(1e6)
myDataY <- rnorm(1e6)
Run a linear model
myModel <- lm(myDataY ~ myDataX)
View the model summary
summary(myModel)

})

This produces an interactive output with two parts, as shown in figure 11.2.1.
The top part is the code with the profiled memory and time. It shows how much
memory was allocated (positive) and deallocated (negative) by the function call.
The bottom part is a flame graph which shows the call stack. The time spent in each
call stack is indicated by the width of the block.

110 CHAPTER 11. EFFICIENT PROGRAMMING

Figure 11.1: Flame graph of profiling output

11.3 Multithreaded Processing

Base R1 was historically designed to run in a single thread. Today, many computers
have multiple cores or even multiple sockets. To make use of the computational
power, many functions in R can be parallelised on a multi-core system for faster
processing.

Microsoft R Open (MRO)2 is a popular distribution of R which offers multi-
threaded processing. It uses Intel Math Kernel Library (MKL) which provides
BLAS and LAPACK subroutines. This allows key mathematical operations to be
performed on all threads.

Example 11.3.1 shows how to detect and change MKL threads in MRO. There

1GNU-R
2https://mran.microsoft.com/open

https://mran.microsoft.com/open

11.3. MULTITHREADED PROCESSING 111

is no need to modify the MKL thread number under normal circumstances.

R Example 11.3.1

Detects how many threads are in use
getMKLthreads()
Change to 4 threads
setMKLthreads(4)
Reset to system default value
setMKLthreads()

Multithreading can also be used to optimise apply() family functions and
for loops. Examples 11.3.2 and 11.3.3 show how a simple sapply() function
can be executed using the parSapply() function in the parallel package. It
sets up a cluster of workers which run simultaneously, where code is executed in
parallel. The cluster is stopped to release resources once the work has finished.

R Example 11.3.2

system.time({
sapply(1:10, function(x) {Sys.sleep(0.25)})

})

R Example 11.3.3

library(parallel)
system.time({
Detect how many cores are available on the system
myCores <- detectCores()
Create a parallel cluster
Use 25% of system cores
myCluster <- makeCluster(floor(myCores * 1/4))
Run the same process on multicore
parSapply(myCluster, 1:10, function(x) {Sys.sleep(0.25)})
Stop the cluster
stopCluster(myCluster)

})

Multithreading does not always guarentee top speed. This is because it has
very significant overhead due to starting and closing the threads. In addition,
multithreaded processes may cause serious issues on multi-user systems, as users
may compete for computational resources at the same time. Besides, using many
threads simultaneously may block other users’ processes. This should always be
used with great care.

112 CHAPTER 11. EFFICIENT PROGRAMMING

Chapter 12

Distributed Computing

Very large datasets which cannot fit in memory need to be processed differently.
There are several big data tools which support large-scale processing. The simplest
way is to carve up the large dataset into smaller chunks and process them seperately.
Once completed, the overall results can be reconstructed.

A slightly more advanced way is to process it natively in a Hadoop cluster which
hosts the large dataset. There are plenty of algorithms which can be executed on
Hadoop, these are mainly provided by Apache Spark MLlib.

12.1 Apache Spark

Apache Spark can be accessed in R via the sparklyr package, which supports the
full dplyr pipeline. It features low-latency computation by caching the working
dataset in memory and performing computations at memory speed. Ideally, Spark
can run on a YARN cluster to maximise the benefits of distributed computing. It
also supports local mode which runs on a single host. Spark can run on several
modes:

Standalone This is also known as local mode. The driver and executors run on
the client machine. Although there is no distribution of computing process,
prototyping and debugging in the local mode is more convenient.

YARN Client Spark driver is launched in the same process as the client that submits
the application. Resource allocation is done by YARN Resource Manager
(RM) based on data locality. Driver program on client machine controls the
executors on the YARN cluster.

113

114 CHAPTER 12. DISTRIBUTED COMPUTING

YARN Cluster The Spark client submits an application to the YARN cluster. Both
the driver and executors run on the YARN cluster.

In Spark, source data can accessed through different ways. Files in CSV format
can be accessed directly in the local file system. Alternatively, various file formats
such as CSV, JSON and parquet can be uploaded to HDFS and read from there.
Spark also supports other object types, such as data.frame, tibble objects
and even Hive tables in Hadoop as data sources.

Exercise 38 Read / Write in Spark

In this exercise, we will learn how to set up Spark and perform simple aggrega-
tion and read/write operations. To begin with, we will check whether Spark is in-
stalled or not. If not, we will invoke the installation command spark_install(),
as shown in example 12.1.1.

R Example 12.1.1

library(sparklyr)
library(dplyr)
Checks which spark versions are available
spark_available_versions()
Checks which version is installed.
spark_installed_versions()
Install spark
Only do this if Spark is not already installed
spark_install()

To open a Spark connection, follow the code in example 12.1.2.

R Example 12.1.2

Opens the Spark connection through sparklyr
Using standalone mode (local master)
mySparkConn <- spark_connect(master = "local")
Checks whether the connection is opened
mySparkConn %>% connection_is_open()
Checks Spark version
mySparkConn %>% spark_version()

Once we have set up Spark connection, we can learn how to convert local data to
Spark and perform aggregation pipeline in dplyr style. This is shown in example
12.1.3.

12.1. APACHE SPARK 115

R Example 12.1.3

Copy a local R data frame to Spark as SDF
mySparkConn %>% sdf_copy_to(mtcars, overwrite = TRUE)
Sets up a connection to Spark data frame (SDF)
myTbl <- mySparkConn %>% tbl("mtcars")
Browse the top rows of the SDF
head(myTbl)
Performs SQL-style aggregation using dplyr framework
It runs natively on Spark
myTbl %>%

group_by(cyl) %>%
summarise(avg_mpg = mean(mpg, na.rm=TRUE))

Spark standalone mode can read and write files in user’s local file system.
Example 12.1.4 shows

R Example 12.1.4

First, write the mtcars SDF to CSV
myTbl %>% spark_write_csv("file:/home/YOUR_USER_NAME/my_data/", mode = "overwrite")
Cchange user to your username/lanid
myCsvLocal <- mySparkConn %>%

spark_read_csv(name = "mtcars_local",
path = "file:/home/YOUR_USER_NAME/my_dat/")

myCsvLocal

Exercise 39 Data Visualisation in Spark

Large datasets are especially hard to visualise. In Spark, we can user the
extension package dbplot to visualise very large datasets. The summary statistics
is computed in Spark, which means that the visulisation process is fully scalable.
Follow the code in example 12.1.5.

116 CHAPTER 12. DISTRIBUTED COMPUTING

R Example 12.1.5

library(nycflights13)
library(ggplot2)
library(dbplot)
Upload the flights dataset to Spark
flights_tbl <- mySparkConn %>% sdf_copy_to(flights, overwrite = TRUE)
Create a line plot showing the mean departure delay
myChart <- flights_tbl %>%

dbplot_line(month, mean(dep_delay)) +
labs(title = "Flights - average departure delay per month",

ylab = "Average departure delay",
xlab = "Month") +

scale_x_continuous(breaks= seq(1,12,1))
Plot the graph
myChart
Compute a histogram of the air_time variable
myHistogram <- flights_tbl %>%

filter(!is.na(air_time)) %>%
dbplot_histogram(air_time, binwidth = 50) +
labs(title = "Flights - air time") +
theme_light()

Plot the histogram
myHistogram

Exercise 40 Train a Random Forest Model

The sparklyr package supports Spark MLlib, which is a library for scalable
machine learning algorithms. We can run a linear regression model using this
package. Example 12.1.6 shows how to run a random forest model on Spark.

12.1. APACHE SPARK 117

R Example 12.1.6

Remove NA data and divide the dataset into two halves
flights_tbl %>%

na.omit() %>%
sdf_partition(training = 0.5,

testing = 0.5) %>%
sdf_register(c("flights_training", "flights_testing"))

Get a pointer object for the training and testing datasets
flights_training <- mySparkConn %>% tbl("flights_training")
flights_testing <- mySparkConn %>% tbl("flights_testing")
Run a random forest model
This can take some time
myFlightsModel <- flights_training %>%

ml_random_forest(dep_delay ~ month + hour + origin + dest + carrier)
Run the model prediction on both training and testing set
myFlightsPredictionTraining <- myFlightsModel %>% ml_predict(flights_training)
myFlightsPredictionTesting <- myFlightsModel %>% ml_predict(flights_testing)
Evaluate model performance using Mean-squared error (MSE)
ml_regression_evaluator(myFlightsPredictionTraining,

label_col = "dep_delay",
metric_name = "mse")

ml_regression_evaluator(myFlightsPredictionTesting,
label_col = "dep_delay",
metric_name = "mse")

Exercise 41 Distributed R

In some cases, users may want to implement custom logic on a large dataset.
Spark allows user to run any custom R code. In example 12.1.7, we create a sample
dataset in Spark and use the function spark_apply() to run an arbitrary R
function on it.

R Example 12.1.7

Create a SDF with 100 rows (with values from 1 to 100)
myData <- mySparkConn %>% sdf_len(100)
Runs arbitrary R code on all Spark executors
This is a native R function
myData %>% spark_apply(function(df) { df * 10 })

118 CHAPTER 12. DISTRIBUTED COMPUTING

Bibliography

[1] Rasmus Bååth. The state of naming conventions in r. The R journal, 4(2):74–75,
2012.

[2] Hadley Wickham and Garrett Grolemund. R for Data Science: Import, Tidy,
Transform, Visualize, and Model Data. O’Reilly Media, Inc., 1st edition, 2017.

119

	R Ecosystem
	Programming Enviornment
	Packages

	Programming Concepts
	Vector
	Character and Datetime
	Factor
	Logical Operator
	Special Numbers
	List
	Data Frame and Tibble
	Function
	Flow Control
	If-Else
	While
	For

	Apply

	Data Transformation
	Filtering
	Sorting
	Subsetting Variables
	Compute Variables
	Summarising

	Regression Models
	Linear Regression
	Poisson Regression
	Logistic Regression

	Tree-based Methods
	Decision Trees
	Random Forest

	Neural Networks
	Multilayer Perceptron

	Time Series Analysis
	Auto-Correlation Function
	Decomposition
	ARIMA Model

	Survival Analysis
	Kaplan-Meier Estimator
	Cox Proportional Hazards Model

	Unsupervised Learning
	K-means Clustering
	Hierarchical Clustering

	Extending R
	R Markdown
	R Notebook

	Shiny Web Application
	Writing Packages
	Reproducibility

	Efficient Programming
	Memory Usage
	Profiling
	Multithreaded Processing

	Distributed Computing
	Apache Spark

