
Predictive Maintenance with Conformal

and Probabilistic Prediction:

A Commercial Case Study

James Gammerman

Submitted for the Degree of Master of Science in

Machine Learning

Department of Computer Science
Royal Holloway University of London

Egham, Surrey TW20 0EX, UK

September 13, 2018

Declaration

This report has been prepared on the basis of my own work. Where other
published and unpublished source materials have been used, these have been
acknowledged.

Word Count: 11,020

Student Name: James Gammerman

Date of Submission: 12/09/2018

Signature: JAMES GAMMERMAN

Abstract

Industrial companies usually own assets which are prone to breaking down.
Each year vast quantities of money are spent on maintenance to fix these
assets after they have failed. This study presents a set of predictive main-
tenance techniques which could help combat this problem.

A large set of sensor data taken from a subsystem of a commercial gas ter-
minal in the UK was analysed. We first used a recently developed machine
learning technique called conformal clustering to show that there are pat-
terns in this data, indicating predictability, and also to identify anomalies
in the data. We then proposed a way to identify which metrics may explain
why the subsystem has failed.

Finally we built a model to predict failure of the subsystem in probabilistic
form, and ran experiments to optimise it.

We believe that the methodology developed in this project could be gener-
alised to many such cases when large data sets from industrial sensors are
available.

Contents

1 Introduction 2

1.1 Predictive Maintenance . 2

1.2 Background to the problem 3

2 Data Pre-Processing 6

2.1 Data description . 6

2.2 Observation Selection . 7

2.3 Feature Selection . 8

2.3.1 Missing values . 8

2.3.2 Wilcoxon rank sum test 8

2.3.3 Using the Wilcoxon rank sum test on our data 10

3 Pattern recognition and Anomaly Detection 12

3.1 t-SNE . 12

3.1.1 Intuition . 12

3.1.2 Algorithm details . 13

3.2 Conformal Prediction . 15

3.2.1 Intuition . 15

3.2.2 Formal explanation . 16

3.3 Conformal clustering . 18

3.3.1 Intuition . 18

3.3.2 Formal explanation . 19

3.3.3 Methodology . 21

3.4 Results and Discussion . 22

3.4.1 Two-dimensional example 22

2

3.4.2 Multi-dimensional example 25

3.4.3 Varying the significance level 28

4 Failure Prediction 32

4.1 Probabilistic prediction . 32

4.1.1 k-Nearest Neighbours algorithm 32

4.1.2 Batch setting vs Online setting 33

4.2 Results and Discussion . 34

4.2.1 Analysis of batch and on-line models 34

4.2.2 Parameter tuning . 37

5 Conclusions and Further Work 39

6 Professional Issues 41

7 Self assessment 43

8 Appendices 44

8.1 How to use my project . 44

8.1.1 Code files in Code/ folder 44

8.1.2 Data files in Data/ folder 45

3

Acknowledgements

I would like to thank Dr Ilia Nouretdinov, Prof Zhiyuan Luo, Prof Alex
Gammerman and Giovanni Cherubin from Royal Holloway for useful conver-
sations and advice throughout this project. The same goes for my colleague
Timothy Wong who introduced me to this project and gave me background
information on it.

I would also like to thank my employer Centrica - firstly for allowing me to
use one of their data sets, and secondly for letting me spend some company
time on writing up this report.

1

1 Introduction

1.1 Predictive Maintenance

One of the main trends of the early 21st century has been the rapid shift of
services and infrastructure from being physical in nature to digital. Indeed
many technology companies now operate a business model which relies on
barely any physical infrastructure. However, the majority of businesses still
own physical assets, particularly industrial players. These often break down,
at vast financial cost to the company.

To combat this, many businesses now perform preventive maintenance,
which involves routine replacement of worn components based on their
life expectancy. However, this is a suboptimal approach as it means that
i) many replacements are made which actually don’t need to be for a long
time and ii) many failures still happen because some pieces of equipment
break before their life expectancy is up.

Predictive maintenance (PM) is a set of techniques to improve this situation,
which involve predicting when a piece of equipment will fail by monitoring
its condition over time. This kind of knowledge makes it easier to plan
ahead (e.g. engineer schedules) and to turn unplanned outages into planned
ones, which increases productivity of the asset. Other advantages include
increased lifetime of equipment, better safety records and optimisation of
spare part management.

PM is a fast-growing field. Its popularity is understandable given the savings
it has the potential to make - according to one study, PM will help companies
save $630bn by 2025 [1].

This sets the scene for the project. Centrica plc is multinational energy
company based in the UK (as well as the employer of the author of this
report) with many physical assets to its name. Every year large sums of
money are spent by the company on maintenance - most notably at the
enormous Rough gas storage facility in the east of England, which it recently
announced would be closed due to safety concerns. But until recently the
company had not made any attempt to predict breakage of any of its assets
ahead of time by monitoring equipment condition.

This report describes one of the first such projects undertaken by Centrica,
investigating the potential for PM at one of its largest assets in the UK.

2

Figure 1: Location of Morecambe Bay Gas terminal

1.2 Background to the problem

The asset in question is a two-stage gas compressor train at a natural gas ter-
minal belonging to Centrica at Morecambe Bay in the northwest of England
- see Fig. 1.

The terminal receives unprocessed gas from an offshore platform via a
pipeline. But the gas is not at a pressure appropriate for consumption
in the UK gas grid (the National Transmission System) - it needs to be
increased. For this purpose a gas compressor subsystem is used, with a
simplified process diagram shown in Fig. 2, taken from Wong et al [2].

In brief, the process is as follows. When the gas arrives from offshore, it
first passes through a low pressure (LP) suction scrubber which removes
condensates such as propane, butane and impurities like hydrogen sulfide
and carbon dioxide. It then enters a LP compressor which raises the pres-
sure of the gas to an intermediate level, before being passed to an intercooler
which reduces its temperature. The gas then goes through a high pressure
(HP) stage consisting of another scrubber which further strips out impu-
rities, followed by an HP compressor which raises its pressure to the level
required for use in the NTS. The gas is then passed to other parts of the
terminal downstream of the compressor train.

3

Figure 2: Process diagram of gas compressor in Morecambe Bay terminal

The power required to drive both the LP and HP stages comes from a gas
generator and power turbine, also shown in the figure.

Sensors are located throughout the subsystem and measure various physical
features of the system, such as temperature, pressure and rotary speed. It is
known from discussions with the Morecambe Bay engineers that the terminal
often breaks (once every few days), and that analysis of these sensor readings
could provide insight on what caused a given failure and whether another
one may occur in a given time frame.

Currently the engineers work on an ad hoc basis to fix problems in the
terminal, after which they write short reports which explain what caused
the failure and what they did to resolve it. This data is too messy and
disorganised to be connected to the sensor data, which is currently not
analysed at all. No preventive maintenance is performed.

And so we come to the problem that this project seeks to address. We would
like to know if we can use machine learning on the sensor data to perform:

1) Failure explanation - i.e. shed some light on the causes of failure of the
compressor in the gas terminal.

2) Predictive maintenance - i.e. predict future failures of this asset in a given
time scale (which we will refer to as a time window), in order that mainte-
nance could in principle be performed pro-actively rather than waiting for

4

breakdown to occur.

This report covers both of these topics in turn. We begin, however, with a
summary of how the data was pre-processed.

5

2 Data Pre-Processing

We start with a short description of the data set before explaining how it
was processed to facilitate analysis.

2.1 Data description

The data was obtained in tabular format as a batch extract from a com-
puter system called Alerts. It covers the period March 2011 - March 2017,
where each row gives a snapshot of the system at a moment in time, and is
separated from the next snapshot by 10 minutes. There are 340,105 rows
and 185 columns. A sample of the data can be found in Fig. 3.

Figure 3: First few rows and columns from Alerts data set

We can summarise the columns of the data as follows:

• A runclockactive column - a binary code where 1 means that the com-
pressor was running at that moment, and 0 means it wasn’t.

• 183 other columns containing measurements from sensors located in
the compressor. For example, pressambient gives us the ambient pres-
sure (measured in atmospheres), lp pressdisch tells us about the dis-
charge pressure in the LP stage of the compressor (just before the gas
enters the HP stage), and gg tempairinlet tells us about the temper-
ature (in degrees) of the air inlet of the generator. Another common
prefix for these metrics is pt which stands for power turbine.

Rather than having the runclockactive column, it would be easier to make
predictions if we knew, at a given snapshot, how much time is left until the
next failure. We therefore convert it into a countdown column which shows
time until breakage measured in units of snapshots. Throughout this report
we treat this value as a kind of label for each observation.

6

2.2 Observation Selection

In its original order, the data consists of a sequence of periods where the
compressor was working, then not working, then working, then not working,
and so on. Due to the lengthy and frequent non-working periods (there are
599 of them), by far the most common countdown value is zero, as we can
see in figure 4.

Figure 4: Histogram of countdown values in original data set

We consider these non-working periods to be of little value in telling us
what caused the most recent failure. Hence we delete all rows in the table
pertaining to these periods, reducing our dataset from ∼340,000 rows to
∼275,000.

This is still a sizeable number. At this point we choose to take a sample
in order to i) improve computational efficiency and more importantly ii)
get a dataset that is close to being independent and identically distributed
(i.i.d), for reasons that will become clear later in this report. The sample is
taken by drawing one random observation from each of the 599 total working
periods.

7

2.3 Feature Selection

A high number of features not only makes training slow, but can also make
it much harder to find a good solution. This problem is often referred to
as the curse of dimensionality. We currently have 183 features and would
therefore like to reduce this number.

2.3.1 Missing values

There are 65 columns with missing values, nearly all of which contain many
of them. The two most common ways to deal with this problem are im-
putation and deletion of data [3]. We can kill two birds with one stone by
removing all columns containing at least one missing value. This deals with
the missing values problem and reduces dimensionality. We are left with
118 features.

2.3.2 Wilcoxon rank sum test

However, this is still too many. We need to perform further feature selection,
and here we chose to use a popular statistical test called the Wilcoxon rank
sum test (also known as the Wilcoxon-Mann-Whitney or Mann-Whitney U
test) . This is a non-parametric approach used to test the null hypothesis
that two independent samples drawn from the same population have the
same distribution (but not necessarily the normal distribution, as in the
student’s t-test). It is useful for us because we can use it to test whether
two samples of the same feature which belong to two different classes are
drawn from the same i.i.d distribution, and hence whether that feature is
informative for explaining the difference between the two classes.

A good explanation of the test is given by both [4] and [5]. It involves the
calculation of a statistic called U , which has a known distribution under the
null hypothesis. Let’s say that we have samples of observations from each
of two populations A = {a1, a2, ..., anA} and B = {b1, b2, ..., bnB} containing
nA and nB observations respectively. We wish to test the null hypothesis
that the distribution of sample A is the same as that of sample B:

H0 : A = B

8

The alternative hypothesis is that there is a so-called location shift between
the two distributions:

H1 : A 6= B, assuming a two-sided test

See Fig. 5 for an illustration of this.

Figure 5: LHS: Null hypothesis - same distributions. RHS: Alternative
hypothesis - distributions differ by a location shift. Taken from [5].

To perform this test, we rank each of the nA+nB observations in order. For
example, the smallest has rank 1, the second smallest rank 2, etc. In case of
ties we assign each observation its average rank. For each observation ai we
sum up the number of bs that are smaller than it, and vice versa for each b.

We then sum up the total number of observations b ∈ B that all the obser-
vations a ∈ A are greater than, denoting this UA, and vice versa, denoting
this UB.

We check that UA + UB = nAnB. Our U−statistic is then min(UA, UB).
Statistical tables can then be consulted to find the probability of observing
a value of U or lower. For a two-sided test, we double this probability to
obtain the p-value.

We can illustrate this with a short example taken from [5]. Say we have the
following set of data showing age at diagnosis of type II diabetes for a set of
young people. We want to test the null hypothesis that the age at diagnosis
is the same for males and females.

Males: 19, 22, 16, 29, 24
Females: 20, 11, 17, 12

1. Arrange all observations in order of magnitude:

9

Age 11 12 16 17 19 20 22 24 29

M/F F F M F M F M M M
M/F 2 3 4 4 4
F>M 0 0 1 2

2. Assign each observation as being M or F.

3. Under each M write the number of Fs which are ranked smaller than
it; under each F write the number of Ms which are ranked smaller than
it (see above).

4. UM = 2 + 3 + 4 + 4 + 4 = 17
UF = 0 + 0 + 1 + 2 = 3

Check that UM + UF = nMnF : 20 = 20

5. U = min(UM , UF) = 3

6. Using tables for the Wilcoxon rank sum test, we find that the two-sided
p-value is p = 0.11.

If we had chosen a significance level of, for example, 0.1, then this
p-value would not be enough to reject the null hypothesis.

2.3.3 Using the Wilcoxon rank sum test on our data

To perform the test we first label each row as being “safe” or “dangerous”
depending on whether it is less or greater than the median countdown value
for the sample data. This gives us two distributions for each feature. We
then loop through all features applying the Wilcoxon rank sum test to each
one, producing a p-value for each feature.

As we will see below, many of the features have tiny p-values, so selecting
a significance level is not needed here. The features with the smallest p-
values show the highest difference in distribution between the “safe” and
“dangerous” classes, and are therefore most likely to be the cause of failure
of the compressor (or at least one of them).

The twenty most important features by this definition are shown in
Table 1, in ascending order of p-value.

10

Table 1: The twenty selected features

.

Number Feature p-value

1 gg-speedhp 8.6× 10−57

2 pt-tempbrgthrust1 3.8× 10−56

3 pt-tempexh 4.0× 10−56

4 gg-flowfuel 2.8× 10−54

5 gg-tempexhtc3 3.5× 10−54

6 gg-speedip 4.2× 10−54

7 gg-presscompdelip 4.0× 10−53

8 pt-tempcoolingair1 1.3× 10−51

9 gg-tempcompdel 3.5× 10−51

10 gg-tempcompdelhp 4.1× 10−51

11 hp-headantisurge 5.1× 10−51

12 gg-presscompdel 1.4× 10−50

13 gg-tempexhtc6 1.7× 10−50

14 gg-tempexhtc5 2.0× 10−50

15 lp-pressdifantisurge 2.1× 10−50

16 gg-tempexhtc2 2.1× 10−50

17 gg-tempcompdelip 3.8× 10−50

18 hp-pressdifantisurge 1.3× 10−49

19 lp-speed 1.3× 10−49

20 pt-templuboiltank 1.3× 10−49

We remove the other 98 features from our sample, leaving us with a final
sample data set of 599 rows by 20 columns. This is the data set we will use
in the next section of this report.

11

3 Pattern recognition and Anomaly Detection

Having obtained an i.i.d sample data set and performed feature selection,
the first task was to look for patterns in the data that might be indicative of
predictability. The popular dimensionality reduction technique t-SNE was
used for this, producing clusters of similar observations.

After establishing predictability, a technique recently developed in [6] called
conformal clustering (CC) was applied to formally identify each cluster and
also allow for detection of individual anomalies that do not lie within the
clusters. A key feature of CC is the ability to tune the proportion of anoma-
lies detected by changing the significance level, which we explore here.

This section outlines the theory behind these techniques followed by an
analysis of the results obtained by applying them to the data. We also
propose a way to identify the most important features for each cluster, which
corresponds to the most likely causes of system failure.

3.1 t-SNE

3.1.1 Intuition

This explanation is based on [7], [8] and [9].

t-SNE is a non-linear dimensionality reduction algorithm used for exploring
high-dimensional data, developed by van der Maaten et al [9]. It usually
transforms the data set into 2 or 3 dimensions which enables visualisation.

Traditionally, principal components analysis (PCA) has been a more popular
technique for dimensionality reduction and visualisation. However, PCA is
a linear technique and hence is not able to interpret complex polynomial
relationships between features. Furthermore, it focusses on placing data
points which are dissimilar in the original feature space far away from each
other in the new dimensions.

By contrast, t-SNE is a non-linear technique which focusses more on data
point similarity : similar points in the original space are placed close together
in the t-SNE space. An explanation of the algorithm follows in the next
section.

12

3.1.2 Algorithm details

t-SNE was inspired by the Stochastic Neighbour Embedding (SNE) technique
developed by Hinton et al [10], but makes a few adjustments. We start with
an explanation of SNE.

SNE starts by converting the Euclidean distances between data points in the
original feature space into a conditional probability which represents their
similarities. Formally, the similarity of data point xi to data point xj is pj|i:

pj|i =
exp(−||xi − xj ||2/2σi2)∑
k 6=i exp(−||xi − xk||2/2σi2)

(1)

where pj|i represents the conditional probability that xi would choose xj as
its neighbour if neighbours were chosen in proportion to their probability
density under a Gaussian distribution centered at xi. σi is the variance of
that Gaussian. Note that i 6= j and pj|i = pi|j .

Let’s say that yi and yj are the low-dimensional counterparts to xi and xj .
We can compute an analagous conditional probability for those counterparts,
denoted as qj|i:

qj|i =
exp(−||yi − yj ||2)∑
k 6=i exp(−||yi − yk||2)

(2)

where j 6= i and qj|i = qi|j .

Logically, for the low-dimensionality feature space to be an accurate rep-
resentation of the original feature space, the difference between pj|i in the
high-dimensional data and qj|i in the low dimensional data should be as
small as possible. This is the goal of the SNE algorithm - to minimise the
mismatch.

It does so by using an asymmetric cost function known as the Kullback-
Leibler (KL) divergence. This is a measure of how different one probability
distribution is from a second probability distribution:

DKL(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i)
(3)

13

where DKL(q||p) is the KL divergence, often called the information gain
that would occur if P were used instead of Q.

SNE minimises this cost function over all the data points by gradient descent.
However, it is hampered by two problems. Firstly by fact that the cost
function is difficult to optimise due to its complex gradients, and secondly
by the so-called “crowding problem”. This refers to the fact that the area
of the low-dimensional map available to accommodate nearby data points is
often not large enough to accommodate distant ones.

t-SNE provides a solution to these problems. Like SNE it minimises the dif-
ference between the conditional probabilities, but does so using a symmetric
form of the cost function which has simpler gradients, proposed by Cook et
al [11]. It has the following form:

C = DKL(P ||Q) =
∑
i

∑
j

pi|j log
pi|j

qi|j
(4)

where pj|i = pi|j and qj|i = qi|j .

To address the crowding problem, t-SNE uses a Student t-distribution rather
than a Gaussian to compute the similarity between two points in the low-
dimensional space. Using this distribution with one degree of freedom, the
joint probabilities qij are defined as:

qi|j =
(1 + ||yi − yj ||2)

−1∑
k 6=l (1 + ||yk − yl||2)

−1 (5)

This heavy-tailed distribution has the property that (1 + ||yk − yl||2)−1 ap-
proaches an inverse square law for large pairwise distances ||yi − yj || in the
low-dimensional map. This results in a bigger distance between mapped
points of dissimliar points.

14

3.2 Conformal Prediction

This explanation follows that of [12] and [13].

3.2.1 Intuition

Traditional ML algorithms do not provide confidence information in associ-
ation with their predictions - their only output is simple predictions. But
often we would like to have such confidence information in order to answer
the question “How good is our prediction?”

Some statistical learning theories such as PAC and VC theory do give us
bounds on prediction errors, but these bounds are often too loose to tell
us anything useful unless the data set being studied is particularly clean,
which is rarely the case. Bayesian methods can produce predictions with
probabilistic measures of their accuracy, but involve making prior assump-
tions about the distribution generating the data. When these assumptions
are wrong, the resulting confidence intervals are also incorrect.

Conformal prediction is a probabilistic framework for making predictions
with confidence. It is makes no assumptions as to the nature of distributions,
and has theoretically proven guarantees of maximum error rate, with the
only assumption being that the training and test data are i.i.d.

The price to pay is that predictions are no longer single-valued. Instead,
the predictions consist of a set of label values. In this sense the prediction
can be considered as “hedged”, and is considered correct if the prediction
set contains the actual label. If it does not, then we consider this an error.

Rather than being a self-contained ML method, conformal predictors oper-
ate on top of another ML algorithm (known as the ’underlying’ algorithm).
This can be any classification or regression algorithm - the only requirement
is that we can extract a “score” from it, as opposed to a simple prediction
with no accompanying metric. This is because in order to apply conformal
prediction to a traditional ML algorithm, we need to develop a noncon-
formity measure (NCM) based on that underlying algorithm. The NCM
evaluates how different a new example (i.e. a feature-label relationship) is
from a set of previous examples. It can be thought of as a measure of how
“strange” the new example is given what came before, and lets us decide
whether it is too strange to be included in our prediction set.

15

3.2.2 Formal explanation

We can formalise conformal prediction following the explanation in [12] .

Say that we have a training set {z1, ..., zl} of observations where each zi ∈ Z
is a pair (xi, yi). Note that xi ∈ R is the vector of attributes for example i
and yi ∈ R is the label for that example.

Let’s say we have a new unlabelled example xl+1 and we want to give some
kind of confidence in the various ȳ values which are candidates for the true
label yl+1. Our only assumption is that all (xi, yi), i = 1, 2, ... are i.i.d. That
is, they are generated independently from the same probability distribution.

In Section 3.2.1 we introduced the concept of a nonconformity measure.
Formally, this is a function A : Z(∗) × Z → R where Z is the set of
all possible labelled examples and Z(∗) is the set of all bags of examples
{z1, ..., zi−1, zi+1, ..., zn}. A tells us how different an example zi is from bag
Z(∗) by assigning it a nonconformity score (NCS):

αi = A({z1, ..., zi−1, zi+1, ..., zn}, zi) (6)

Suppose we are interested in some particular candidate label ȳ for the ex-
ample xl+1. Our null hypothesis is that (xl+1, ȳ) was drawn i.i.d from the
same distribution as the training examples and so we can include it in our
prediction set Γε. Adding this new example (xl+1, ȳ) to our training set
{(x1, y1), ..., (xl, yl)} gives us the extended set

{z1, ..., zl+1} = {(x1, y1), ..., (xl+1, ȳ)} (7)

Now we can use an NCM Al+1 to compute the NCS

Al+1({z1, ..., zi−1, zi+1, ..., zl+1}, zi) (8)

of each example zi, i = 1, ..., l + 1.

What might such a NCM be for an underlying algorithm like k-nearest
neighbours (see section 4.1.1 for details of this algorithm)? For a bag
Z(∗) = *(x1, y1), (x2, y2), ..., (xn, yn)+ and zi = (xi, yi) it is as follows:

A(B, z) =
minj:yj=yid(xj , xi)

minj:yj 6=yid(xj , xi)
(9)

16

In words it is the ratio:

distance to z’s nearest neighbour in Z(∗) with the same label

distance to z’s nearest neighbour in Z(∗) with a different label

Returning to our example, on its own the NCS αl+1 is not particularly useful.
But if we compare αl+1 for example zl+1 against that of all other examples
then we can quantify how unusual it is. To do this we use the formula

p(ȳ) =
#{i = 1, ..., l + 1 : αi ≥ αl+1}

l + 1
(10)

where p(ȳ) is the p-value of ȳ. In words we can express this as:

number of examples that conform worse or the same as αl+1

total number of examples

We can reject the null hypothesis if the p-value is less than a chosen sig-
nificance level ε, meaning that this candidate label is not selected for our
prediction set. We then repeat this process for all other candidate labels. It
is also common to talk in terms of a confidence level δ, where

δ = 1− ε (11)

We can illustrate the meaning of ε and δ with the following example. Imagine
that we have a training set of observations, each with a label from 0-9. After
training a conformal predictor with k-nearest neighbours as described above,
we obtain the following p-values for each label:

0 1 2 3 4 5 6 7 8 9

0.8 0.3 0.2 0.7 0.9 0.4 0.6 0.7 0.8 0.5

If we choose a significance level of 85%, we select only those labels with
p-values > 0.85 for our prediction set Γ ε : Γ 0.85 = {4}. Correspondingly,
this is our prediction set at a confidence level of 15%.

Likewise, if we choose a significance level of 5%, our prediction set at a
confidence level of 95% is Γ 0.05 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Conformal prediction has two desiderata:

17

1. Validity: The long run frequency of error does not exceed the sig-
nificance level ε at each chosen confidence level δ. One of the key
advantages of CPs is that they are automatically valid under the as-
sumption of exchangeability [14]. Note that the exchangeability prop-
erty is weaker than i.i.d, since

iid⇒ exchangeable

There is also the notion of strict validity which means that the
probability of error equals ε, rather than being less than or equal to
it. To achieve this, we adjust the formula for the p-value:

p̃(ȳ) =
#{i = 1, ..., l + 1 : αi > αl+1}+ τ{i ∈ {1, ..., l + 1} : αi = αn}

l + 1
(12)

where τ is a random number sampled in Uni(0, 1). This is known as
a smoothed conformal predictor [15].

2. Efficiency: The prediction set should be as small as possible. This
depends on the quality of the NCM based on the underlying algorithm.

3.3 Conformal clustering

3.3.1 Intuition

Conformal clustering (CC) is a technique based on conformal prediction,
in which clusters are identified from unlabelled training examples. It was
developed by Cherubin et al in [6] and [7], and this explanation is based on
those publications.

The intuition behind CC is that unlabelled data is used to train a conformal
predictor which then outputs a region of “normality” (with respect to the
data) on a 2D grid. This prediction region (or prediction set) varies in size
depending on the value of ε, and can be divided into clusters, which we call
“predicted clusters”.

The original data points are then projected onto the grid and themselves
grouped into clusters corresponding to the predicted clusters they lie in.
Those points which do not lie in any cluster are classed as anomalies.

18

As an additional step to the original algorithm in [6], for purposes of failure
explanation the data is projected back into the original feature space. We
then repeat the Wilcoxon test from Section 2.3.3, but this time we compare
clusters rather than different classes of the same feature. The idea is that
this tells us which features explain the difference between the clusters we
are interested in.

3.3.2 Formal explanation

A d -dimensional grid of equally-spaced points per side is created, where d
is the number of features (in our case, d = 2). The range of each side of
the grid corresponds to the minimum and maximum of the d features. The
space between each grid point is a constant of 1 unit of the t-SNE projection
space.

Now we train our conformal predictor. To do this we use the whole data
set as an input to the k-nearest neighbour algorithm to find the distances
to the k-nearest neighbours for all observations (each of which is located
somewhere within our 2D grid). This gives us a table of distances with n
rows and k columns.

Then we consider each grid point to be a kind of pseudo-test set, and loop
through each one. During each loop we extend the table of distances by
one row and one column to account for this test observation, and update
the values in the table. We compute a nonconformity score for all n + 1
rows (that is, the whole data set plus grid point i) using the following
nonconformity measure:

A = Sum of the distances to the nearest k-neighbours

We can then compute a p-value for each grid point by finding the proportion
of observations which have an NCS at least as high as the test object, as
explained in the previous section.

As in conformal prediction, our null hypothesis is that the test object (our
grid point) is from the same distribution as the training set. If a grid point’s
p-value is below the significance level that we choose, then this null hypoth-
esis is rejected.

Correspondingly, those grid points with a p-value above the chosen signifi-
cance level ε are included in the prediction region, shown in yellow in Fig.6.

19

We start by assuming that each grid point is its own cluster (to differentiate
this from a cluster of actual data points we will refer to these as predicted
clusters). But intuitively clusters which are very close together should be
classed as the same cluster. Hence we merge the clusters using a neighbour-
ing rule, whereby two points zi and zj are in the same predicted cluster if
they are within one grid point of each other on the grid.

Finally, having established the prediction clusters, we project the training
data onto the grid and assign all points to data clusters corresponding to the
predicted cluster that they lie in. Different clusters are denoted by different
symbols in the upcoming figures. Any points that do not lie in a predicted
cluster are considered anomalies.

An illustration of CC is shown in Fig.6. We start with a 2D grid (not to scale
- the actual grid lines would be finer than this). We then train a conformal
predictor on our training data as described above such that all grid points
with a p-value above ε are included in our prediction region - these points
are coloured yellow in the figure. The prediction region is then split into
clusters according to the neighbouring rule. Finally we project the training
data (in blue) onto the grid, with the data points shown in different shapes
depending on which predicted cluster they lie in. Note, for example, the
diamonds, triangles and crosses in the clusters on the left of Fig.6. Any
points remaining outside the clusters are considered as anomalies. These
data points break the i.i.d assumption so are not included in the prediction
region.

20

Figure 6: Two-dimensional prediction region. Units are 1% of maximum
value for each feature

The significance level ε can be used to vary the proportion of observations
classed as anomalies. A higher ε means that less grid points exceed the
p-value necessary to be included in the yellow prediction region, hence our
whole prediction region is smaller, and when we project the data onto the
grid less points end up within clusters.

3.3.3 Methodology

To summarise, the steps to implement this algorithm were as follows:

1. Reduce dimensionality using t-SNE.

2. Conformal clustering to produce prediction region. Significance level
ε = 0.1 and underlying method is k-nearest neighbours with k = 5.

3. Divide the prediction region into predicted clusters according to the
neighbouring rule.

4. Project actual data onto the grid. Identify data clusters and anomalies
in actual data.

5. De-project data back into original feature space.

21

6. Attempt to identify features which explain the differences between
clusters using the Wilcoxon rank sum test.

Steps 1-4 follow from [6] while steps 5 and 6 have been added to enable
explanation of the clusters. Steps 1 and 5 are only required when dealing
with high-dimensional data.

3.4 Results and Discussion

3.4.1 Two-dimensional example

To demonstrate the technique, let’s start by only applying it to the two
most important features as measured by the Wilcoxon rank sum test in
section 2.3. These are gg-speedhp (the speed of the gas generator) and
pt-tempbrgthrust1 (the temperature of the thrust bearings in the power
turbine). Both features have been rescaled by dividing by 1% of its maximal
absolute value to put them on the same scale.

We start with a plot of the CC prediction region, shown (Step 2) in yellow
in Figure 7. We can consider this as the set of points that are not abnormal
given the training set (which is the full data set). Unconnected yellow regions
can be considered as prediction clusters - analagous to clusters of actual
data. Correspondingly, the white area is the region of abnormality: any
point located in this region is “strange”, or anomalous, with respect to the
training data.

22

Figure 7: Two-dimensional prediction region. Units are 1% of maximum
value for each feature

Figure 8: Two-dimensional prediction region and training data. Units are
1% of maximum value for each feature.

23

Figure 8 shows the training data superimposed on the prediction region.
For each data point we can draw information from i) its x-position, ii) its
y-position, iii) its shape and iv) its colour.

The shape of the data points correspond to their cluster number. For exam-
ple, close inspection of the plot reveals triangles, crosses, circles with crosses
inside, etc. A data point belongs to a different cluster than another data
point if it is located in a different predicted cluster.

The colour of the data points corresponds to their countdown value. A
green point means that that at that snapshot/moment the system was more
than 24 hours from failure (countdown > 144: a “safe moment”) and a red
point means that it was less than 24 hours from failure (countdown < 144: a
“dagnerous moment”). This colouring scheme is applied only at the end. It
is noteworthy that the largest cluster centered at (7, 99) contains practically
all the green observations.

A more quantitative analysis of the clusters is given in Table 2. It includes:

• The location as determined by the coordinates of the centre of the
predicted cluster.

• The volume - a measure of space occupied by the predicted cluster.

• The size as determined by the number of actual data points in a the
predicted cluster.

• The risk level - the proportion of red data points in the cluster.

• An explanation of the cluster in terms of its location on the axes.

It is also split into three sections: the largest cluster, which is also the safest
by risk level; very dangerous clusters; and one cluster which is similar in risk
level to the largest one.

The size and volume metrics are two different ways of measuring how large
a cluster is, of which the volume is probably more valuable. A large and
mainly red cluster would be of most interest to us since that would denote
a dangerous state of the system that is frequently observed.

The final column is an attempt to explain the difference between a given
cluster and the largest one in terms of its coordinates. We note that safer
states of the system tend to be found at higher values of the features, apart
from a very green data cluster at (7,99). This would indicate that when the

24

speed of the gas generator and the temperature of the thrust bearing fall,
there is a high probability that the compressor will fail.

All anomalies are shown as circles on the plot, and we note that nearly all
of them are coloured red. This means that any such anomalous moment
usually precedes a break down of the compressor.

Table 2: Clusters explained in 2 features sorted by risk level
Cluster Vol. Size Risk Explaining features
location level (vs. majority)

LARGEST CLUSTER

(95, 71) 270 373 0.61 feature 1: very high 80–100
feature 2: high 55-90

VERY DANGEROUS CLUSTERS

(0,32) 15 5 1 feature 1: very low -2–3
feature 2: 30-35

(1, 49) 97 63 1 feature 1: low -3–7
feature 2: 35–58

(1, 0) 37 74 1 feature 1: -3–7
feature 2: -2–3

(72, 51) 50 33 1 feature 1: 67-77
feature 2: 45-55

SAFEST CLUSTER

(7, 99) 8 4 0.25 feature 1: low 5-10
feature 2: very high 95-100

3.4.2 Multi-dimensional example

Having demonstrated the CC technique with two features, lets us now look
at all twenty features from the pre-processed data set. Unlike in the two-
dimensional example, t-SNE has been applied to reduce each observation
into two dimensions. Conformal clustering has then been applied to the t-
SNE dimensions. As with two dimensions, we have used a significance level
ε = 0.1 and k-nearest neighbours as the underlying method for the NCM
calculation with k = 5.

Fig.9 shows the resulting prediction region in yellow. The four corners of
the grid are marked with blue circles. Fig.10 shows the training data su-
perimposed on the prediction region and coloured according to their danger

25

level.

Figure 9: Prediction region for 20 features after t-SNE. Axes have artificial
units in the t-SNE projection space

Figure 10: Prediction region and actual data for 20 features after t-SNE.
Axes have artificial units in the t-SNE projection space

26

We can see that this plots contains many more clusters than in the two-
dimensional case. The green observations are also more spread out among
the clusters, rather than mainly being located in one. That said, there are
several clusters - the largest at (-27,-23), (-24,18), (-64,9) and (-3, 60) -
which are completely red and hence correspond to very dangerous states of
the system.

These clusters can also be found in Table 3, which is analagous to Table
2. However, the last column now seeks to identify the features which may
explain the cluster in a slightly different way. Simply looking at its coordi-
nates does not tell us much since t-SNE dimensions do not have a physical
meaning. Instead, we redo the Wilcoxon rank sum test to compare each
feature from a given cluster with the largest cluster, which is also one of the
safest ones, and may be interpreted as the most common state of the sys-
tem. This produces a p-value for each feature, and we select those features
with the smallest p-values as being the most likely causes of differentiation
between the two clusters.

27

Table 3: Analysis of clusters produced from 20 features, sorted by risk level
Cluster Vol. Size Risk Explaining features

(-27,-23) 295 76 1 ALL p < 10−35

smallest: 5,17,20

(-24,18) 168 42 1 ALL p < 10−23

smallest: 5,10,12

(-64,9) 117 41 1 ALL p < 10−22

smallest: 18,4,19

(-6,7) 55 14 1 ALL p < 10−8

smallest: 12,6,13

(-17,-2) 29 6 1 ALL p < 10−4

smallest: 1,5,17,20

(-9,35) 25 6 1 ALL p < 10−4

smallest: 5,7,8,13,14

(-3,60) 71 25 1 ALL p < 10−15

smallest: 14,5,20

(22,7) 40 10 0.9 1–15,17–18,20
(p < 10−6)

smallest: 8,15,4

(31,-30) 43 9 0.66 1,10,16 (p < 10−5)

(10,12) 786 198 0.62 THE LARGEST

(34,0) 287 68 0.57 1–2,4–9,
11–15,17,19–20

(p < 10−8)

(12,24) 236 66 0.57 12 (p < 10−11)

(50,-15) 64 14 0.5 8 (p < 10−9)

(-38,1) 28 6 0.16 ALL p < 10−4

smallest:
7,8,10,13–15,17

3.4.3 Varying the significance level

As explained in section 3.3, the significance level ε can be used to vary the
proportion of observations that are classed as anomalies. This is illustrated
in Figs 11 - 14. We can see that the as ε increases, the prediction region
contracts which reduces the size of the clusters causing some to split, and
increasing the number of observations classed as anomalies. For example,

28

note how the area of the grid centered at approximately (18,2) goes from
being part of the prediction region to being outside it by the time that ε has
risen to 0.2, causing the surrounding data points to be classed as anomalies.

Figure 11: Prediction region and actual data with ε = 0.01. Axes have
artificial units in the t-SNE projection space

29

Figure 12: Prediction region and actual data with ε = 0.05. Axes have
artificial units in the t-SNE projection space

Figure 13: Prediction region and actual data with ε = 0.1.

30

Figure 14: Prediction region and actual data with ε = 0.2.

31

4 Failure Prediction

In the previous section, we used conformal clustering to show that there are
indeed patterns in the data, suggesting good predictability. As an extension,
we also proposed a way to explain which features most likely explain the
difference between smaller clusters and the largest one.

In this section we turn our attention to building a predictive model capa-
ble of predicting whether our system will break within a given time frame.
We know from the CC analysis that some clusters are more predictable
than others, as they have higher scores on the risk metric. This means
that sometimes we can make predictions with higher confidence than other
times. To capture this insight, we therefore choose to make predictions in a
probabilistic form rather than providing a simple “Yes/No” prediction.

4.1 Probabilistic prediction

We start with an overview of the k-nearest neighbours algorithm, which is
the basis of the predictive model. We then describe the full methodology,
followed by a discussion of the results obtained.

4.1.1 k-Nearest Neighbours algorithm

This explanation is based on [16] and [3]. The k-nearest neighbours al-
gorithm (k-NN) is a non-parametric technique for both classification and
regression. It takes as input the k closest training examples to a test exam-
ple in the feature space. The output depends on whether what kind of task
we are doing:

• In classification, an object is assigned to a particular class by a ma-
jority vote of its nearest k neighbours. If k=1 it is simply assigned to
the class of that single nearest neighbour.

• in regression and probabilistic prediction, we are seeking a numerical
value for the object, which is usually the average of the values of its
nearest k neighbours.

The key part of the calculation is calculating the distance between a test
observation and its surrounding training observations. Euclidean distance

32

(i.e. the straight-line distance between two objects) is the most commonly
used metric for this:

(P∑
j=1

(xaj − xbj)2
)1/2

where xa and xb are two objects with features j = 1, 2, ...P .

In this approach to probabilistic prediction, we adapt the k-nearest neigh-
bours classification algorithm such that instead of making a binary classi-
fication based on a majority vote, we produce a probability by taking the
average of the classes of the surrounding k neighbours. For example, if
k = 50 and a test object has 40 neighbours from class A out of those 50,
we would predict class A for the object with a probability of 80%. In this
sense it is a classification technique with an element of regression (but not
a regression technique per se).

4.1.2 Batch setting vs Online setting

Any machine learning system can be said to learn in batch mode, where
it is first trained using all available data and then runs without learning
anymore, or on-line mode, where the system is fed data incrementally and
learns on the fly. Here we explore both approaches.

Method in batch setting

1. Split i.i.d data set 50:50 into training and test set.
2. Feature selection using Wilcoxon rank sum test on training set.
for each test observation i do

3. Apply k-nearest neighbour algorithm:
- Calculate Euclidean distance between all training observations
and test observation i.
- Find k nearest neighbours to i.
- Make a prediction for i based on the average of its neighbours

end

Method in on-line setting

In on-line mode the method is slightly different:

33

for each test observation i do
1. Define the training set (all previous observations before the test
observation) and test observation i.
2. Feature selection using Wilcoxon rank sum test on training set.
3. Apply k-nearest neighbour algorithm:
- Calculate Euclidean distance between all training observations
and test observation i.
- Find k nearest neighbours to i.
- Make a prediction for i based on the average of its neighbours

end

Of the two, the on-line setting is more realistic in this scenario (sensor data
is a time series) so we will use that one for our experiments later on.

4.2 Results and Discussion

4.2.1 Analysis of batch and on-line models

Figures 15 and 16 show the results for the batch and online approaches, with
k = 50 and a time window of 1 day. The predicted probability is on the
x-axis, while the upper part of the plot shows observations that were within
24 hours of failure and the lower part shows observations that were not.

34

Figure 15: Predicted probability of failure within 1 day vs outcome: Batch
setting

Figure 16: Predicted probability of failure within 1 day vs outcome: On-line
setting

35

Both models tend to give high probability to realised failures rather than
non-failures, which is positive. The predictions of 100% (some of which
are wrong, especially for the batch model) clearly need to be adjusted. In
future work this could be accomplished using a Venn-Abers predictor, which
produces calibrated predictions [17].

There is a larger variance in the predictions made by the on-line model, as
might be expected given that due to the nature of its learning process it is
better tuned at the end of its training than at the beginning. It would be
useful to see how its predictions change over time.

We therefore replot Fig.16 with time (in moments) on the x-axis and pre-
dicted probability on the y-axis - see Fig.17. As in the conformal clustering
part of this report, we colour an observation red if it was within 1 day of
failure or not and green if it wasn’t.

Figure 17: Time vs Predicted probability of failure within 1 day: On-line
setting. Red = Realised failure, green = realised non-failure

In the plot we can observe improved performance of the model over time.
Given that a false negative (i.e. incorrectly indicating no danger) is worse
than a false positive (incorrectly indicating danger), we would hope to see
that over time less red observations are given a low probability of failure,
which is the case.

36

It is notable that nearly all observations with a low predicted probability
(< 40%) appear in a small region between ∼100-170 on the x-axis, with a
high concentration of red observations around the 130 mark. This suggests
that a new kind of breakage has appeared for which the algorithm has not
yet been trained, and implies deviation from i.i.d.

After ∼170 on the x-axis, however, the model appears to have learnt about
this kind of breakage and makes no more predictions < 40% for red obser-
vations. After ∼300, the vast majority of red observations are given a high
predicted probability of failure, many of them around the 100% mark.

Visualisations can only give us limited insight on model performance. Table
4 shows a way in which we can summarise its accuracy at different intervals
of probability:

Table 4: Proportion of actual failures in probability intervals from Fig. 17
Interval No. Predictions Proportion of actual failures

0.0-0.1 0 NaN
0.1-0.2 0 NaN
0.2-0.3 22 0.73
0.3-0.4 23 0.39
0.4-0.5 57 0.60
0.5-0.6 158 0.61
0.6-0.7 84 0.63
0.7-0.8 26 0.77
0.8-0.9 27 0.89
0.9-1.0 202 0.97

The third column of the table shows that (apart from the 20-30% interval
discussed above) the proportion of actual failures increases with each prob-
ability interval. Most notably, the model puts 202 test observations in the
90-100% probability interval, and 97% of these resulted in failure within a
day. This means that when our model is highly confident of failure, it is
very often correct.

4.2.2 Parameter tuning

Maybe k=50 isn’t an optimal value for the number of nearest neighbours?
Maybe we would like to know how our model performs when trying to predict

37

failure within 12 hours rather than 24? To do so we need a single-value
metric to evaluate the performance of our model. We therefore introduce a
loss function at this point.

For probabilistic models such as ours, a common loss function is the log loss
or cross entropy. This takes the predictions of the model and the true target,
and computes a distance score between them which captures how well the
model has done on this test example.

The log loss calculated for different values of k, and the results are shown in
Table 5. The result is marginal, but the lowest log loss comes when k = 25.

Table 5: Log loss for different values of k neighbours
k Log loss

5 0.52
10 0.48
25 0.47
50 0.48
100 0.50

Having established that k=25 is optimal, the next task was to investigate
how our model performs for different time windows. Would it perform worse
when asked to predict failure within 6 or 12 rather than 24 hours? See table
6 for the results.

Table 6: Log loss for different time windows
Time window (hours) Log loss

1 0.45
6 0.51
12 0.51
24 0.47
48 0.43

It is interesting to note that model performance seems to perform best on
short and long time windows (1 and 48 hours) rather than the medium ones.

38

5 Conclusions and Further Work

To conclude, we have managed to:

• Pre-process the data and take an (almost) i.i.d sample.

• Use the recently-developed conformal clustering technique to show
that there are patterns in the data which imply predictability. The
clusters refer to frequently observed states of the system.

• Formally identify the clusters programmatically (as opposed to just vi-
sual inspection), as well as the anomalous data points which sit outside
these clusters. We have also shown that we can vary the proportion of
data points classified as anomalies using the significance level ε, which
is a feature of conformal clustering.

• Proposed a methodology for identifying which metrics are the most
likely causes of failure in the subsystem.

• Built a predictive model using k-nearest neighbours that gives proba-
bilistic predictions of whether the system will fail within a given time
frame, and run experiments to find out the optimal value of k (25)
and the optimal time window (48 hours). The model shows best per-
formance when it makes predictions with high probabilities.

In terms of further work, having developed this methodology, it would be
interesting to see how the algorithms work on the full data set, as opposed
to just the i.i.d sample. In the case of the probabilistic prediction model,
this would be a more realistic reflection of how data would be input into the
model if were to be productionised in a commercial setting.

We only used the k-nearest neighbours algorithm for probabilistic prediction
because it is a simple approach which has a proportion-based voting system
and hence lends itself to producing probabilities. But there is no reason why
other algorithms couldn’t be used, such as random forests, neural networks
or support vector machines.

It would also be worth adjusting the model to make sure that predictions
with 100% probabilities are not made. Even when confidence of failure is
high it is unwise to make such confident predictions, and as we saw in Section
4.2 they can sometimes prove to be wrong anyway. Venn-Abers prediction
provides a framework for doing this [17]. In that section we also saw what

39

appeared to be deviation from i.i.d behaviour in Fig.17, which would be
worth investigating.

Finally, we used t-SNE to reduce the high-dimensional data to two dimen-
sions, but it can also output three dimensions. It would be interesting to
see what kind of effect this might have on the number and purity of clusters
produced by conformal clustering.

40

6 Professional Issues

Considerable time spent at the start of this project getting to grips with
what the data set was actually describing. That is, understanding what
the column names meant, where did the compressor fit into the rest of the
terminal, was there potentially another data set that would be more useful
to analyse, exactly what time period was covered by the data, etc. This was
largely due to the fact that the engineers who know the systems best were
based in Aberdeen and were not easy to reach.

Furthermore, the original data itself had to undergo some cleaning before
being entered into Centrica’s data lake, from where I was able to access it.
This cleaning included the removal of the date/time feature due to data
type constraints in the database. This in turn meant that it was impossible
to compare the presumed failures in the Alerts data set with an analagous
data set consisting of engineering text notes. These notes contained the
engineer’s diagnosis of every fault in the compressor and the solution s/he
implemented to fix it. The value of this project would have been greatly
increased if it had been possible to compare the main causes of failure we
have proposed in Table 3 with the actual causes as identified by the engineer.

Another issue was that the Morecambe Bay gas terminal was built in 1992,
and over its lifetime has undergone several upgrades and refurbishments. As
a result, not all of the sensor data necessarily reflects the actual state of the
system. That is, some “failures” in our original dataset may have actually
been planned outages to allow for an upgrade. However, the patterns in the
data as revealed by conformal clustering suggests that there were not many
such cases.

Perhaps most importantly of all, soon after the commencement of this
project it was announced that the subsidiary of Centrica that owned the
data (Centrica Exploration & Production) was to be closed down and re-
placed with a joint venture between Centrica and the German utility Bay-
erngas Norge. This joint venture is under new management with different
priorities to those of the previous management, and as a result there is (as
yet) not much interest in using the results from this project for starting a
predictive maintenance program. This author hopes that, despite this, the
techniques developed here will be applied in other parts of the company.
For example, Centrica Storage Limited is another subsidiary with several
large assets which could benefit greatly from such a predictive maintenance
program.

41

Regarding data privacy, since this data set pertained to sensor data from
machines (and from a company that technically doesn’t exist anymore) as
opposed to customer data, there were no General Data Protection Regula-
tion (GDPR) related issues in this project.

Regarding plagiarism, naturally I obtained permission to use the Cherubin
et al’s paper on conformal clustering [6] as a basis for the pattern recognition
part of this report, and indeed benefited from the advice of the main authors
of that paper as to how proceed throughout this project.

This proprietary dataset was provided by Centrica PLC (Registered office
address: Millstream, Maidenhead Road, Windsor, Berkshire, SL4 5GD), all
rights reserved.

42

7 Self assessment

To complete this section I will answer the questions posed in the Project
Handbook in Q&A format:

- How did the project go?

Overall, very well. Plenty has been achieved in a relatively short space of
time: recognising patterns in the data, detecting anomalies, proposing the
main causes of failure for different states of the system, and building a model
to predict failure of the system in various time frames. I’m pleased with how
much this project covers.

- What did you do right/wrong?

The right things I did included talking at length to the main authors of
the Cherubin et al paper for advice, as well as consulting with other data
scientists and engineers at Centrica for getting more insight on the data set
and the gas terminal.

In terms of things I would have done differently, I think that the project could
have gone even better if I had asked the Morecambe Bay engineers more
questions about the terminal and the Alerts data set at the very beginning,
rather than waiting until I’d had a chance to look thoroughly at the data
before doing so. This would have made planning the project easier (see next
question).

Also, although my code works, I think it could perhaps be a bit more ef-
ficient. For example, to run the algorithms with different parameters you
need to manually change a part of the script and then run it all from scratch.
This could have been improved by writing formal functions which execute
the algorithms, such that all the user needs to do is run the function while
changing the values of the arguments provided to it.

- What have you learnt about planning and executing a project?

A great deal. In particular, as mentioned above I learnt how important
it is to ask as much as possible about the data set and underlying physical
systems before starting to analyse it yourself. This saves a lot of time further
down the road.

From the point of productivity, I also grew to appreciate the minimal viable
product (MVP) approach taken by many software companies, whereby you
build a basic prototype of a model as quickly as possible and then iteratively

43

improve it, rather than spending a long time building that prototype such
that it contains as few errors as possible first time round. The same applies
to the writing of this report.

- Where might you go next?

See the Conclusions section for proposed next steps in this project. I am
hopeful that a paper will be published based on some of the results in this
thesis.

8 Appendices

8.1 How to use my project

This report has been submitted as a PDF along with four files of R code
and one data file.

8.1.1 Code files in Code/ folder

Note that these files are in R Markdown (.Rmd) format, which should be
opened in the RStudio IDE, not the base R program. This means that rather
than being simple .R scripts that you execute in one go, they are more like
notebooks containing chunks of R code that you run one chunk at a time.
That said, there is a “Run All” option that lets you execute the whole script.

I chose to do this project in R markdown as the notebook-form facilitates
analysis more easily than the traditional script-only form. This is analagous
to the popular Jupyter Notebooks used in Python programming.

The four files are as follows:

1. 0 data preprocessing.Rmd - this file shows how the original data set
(with 7 years’ worth of data) was preprocessed to get the sample data
set with dimensions of [599 x 119] which was the basis for the rest of
this project. Note that the original data set has not been provided
in the Data/ folder due to its large size (nearly 1 GB). Therefore
this script cannot be run by the marker, it is just to illustrate how
the data was preprocessed to produce the Alert representatives data
frame which formed the basis for the analysis in this report.

44

2. 1 clusters for 2 fts v2.Rmd - this starts from the tb alerts representatives
sample and runs conformal clustering in two dimensions. I recommend
looking at the next file as this similar and contains more comments to
explain how the script works.

3. 2 cluster for 20 fts and tsne.Rmd - this file contains the code for run-
ning conformal clustering on 20 features. Note the key lines for chang-
ing parameters (the value of k and the significance level ε) are lines 91
and 92.

4. 3 probabilistic predictions.Rmd - this file contains the code for the
probabilistic prediction part of this project. Note that the key lines
for changing parameters (the time window, referred to in the script as
“danger period”, and the value of k) are lines 38 and 40.

All files contain extensive comments to explain what is happening in each
part of the script.

8.1.2 Data files in Data/ folder

This folder contains the Alert representatives.RData data frame. This con-
tains the sample of dimensions [599x119] descibed above i.e. after processing
the original data set, but before feature selection has been performed using
the Wilcoxon rank sum test. This is the starting point for all the analysis in
this report (i.e. for the last three scripts described in the previous section)

References

[1] Https://www.anodot.com/blog/predictive maintenance-
whats-the-economic value/. Predictive Mainte-
nance: What’s the Economic Value? URL
https://www.anodot.com/blog/predictive-maintenance-whats-the-economic-value/.

[2] Timothy Wong. Sequence-to-Sequence Model for Signal Analysis. 2017.

[3] Max Kuhn and Kjell Johnson. Applied Predictive Modeling [Hardcover].
2013. ISBN 1461468485. doi: 10.1007/978-1-4614-6849-3.

[4] Rosie Shier. The Mann-Whitney U Test. Technical re-
port, Mathematics Learning Suport Centre, 2004. URL
http://statstutor.ac.uk/resources/uploaded/mannwhitney.pdf.

45

[5] Chris Wild. The Wilcoxon Rank-Sum Test. URL
https://www.stat.auckland.ac.nz/ wild/ChanceEnc/Ch10.wilcoxon.pdf.

[6] Giovanni Cherubin, Ilia Nouretdinov, Alexander Gammerman, Roberto
Jordaney, Zhi Wang, Davide Papini, and Lorenzo Cavallaro. Confor-
mal Clustering and Its Application to Botnet Traffic. In Statistical
Learning and Data Sciences, volume 9047, pages 313–322. Springer,
2015. ISBN 978-3-319-17090-9. doi: 10.1007/978-3-319-17091-6. URL
http://link.springer.com/10.1007/978-3-319-17091-6.

[7] Giovanni Cherubin. Bots detection by Conformal Clus-
tering. PhD thesis, Royal Holloway, 2014. URL
https://giocher.com/files/docs/bdcc-msc-thesis.pdf.

[8] Https://www.analyticsvidhya.com/blog/2017/01/t sne-
implementation-r python/. Comprehensive Guide to t-SNE algorithm.

[9] L J P Van Der Maaten and G E Hinton. Visualizing high-dimensional
data using t-sne, volume 9. 2008. ISBN 1532-4435. doi: 10.1007/s10479-
011-0841-3.

[10] Geoffrey E Hinton and Sam T Roweis. Stochastic neigh-
bor embedding. Advances in neural information process-
ing systems, pages 833–840, 2002. ISSN 10495258. doi:
http://books.nips.cc/papers/files/nips15/AA45.pdf.

[11] James Cook, Ilya Sutskever, Andriy Mnih, and Geoffrey Hinton. Visu-
alizing Similarity Data with a Mixture of Maps. International Confer-
ence on Artificial Intelligence and Statistics, (1):67—-74, 2007. ISSN
15324435.

[12] Harris Papadopoulos, Vladimir Vovk, and Alex Gammerman. Regres-
sion conformal prediction with nearest neighbours. Journal of Arti-
ficial Intelligence Research, 40:815–840, 2011. ISSN 10769757. doi:
10.1613/jair.3198.

[13] Paolo Toccaceli. Tutorial on Conformal Predictors and Venn Predictors.
2018.

[14] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic
Learning in a Random World, 2005.

[15] Alexander Gammerman and Vladimir Vovk. Hedging predictions in ma-
chine learning. Computer Journal, 50(2):151–163, 2007. ISSN 00104620.
doi: 10.1093/comjnl/bxl065.

46

[16] Wikipedia. K-nearest neighbors algorithm. URL
https://en.wikipedia.org/wiki/K-nearest neighbors algorithm.

[17] Vladimir Vovk and Ivan Petej. Venn-Abers predictors. pages 1–18,
2018. URL http://arxiv.org/abs/1211.0025.

47

